from src.models.build_sam3D import sam_model_registry3D from src.dataset.dataloader import Dataset_promise, Dataloader_promise import torchio as tio from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.data.distributed import DistributedSampler import torch def get_dataloader(args, split='', use_small=False): transforms_list = [tio.ToCanonical(), tio.Resample(1), ] if split == 'train': transforms_list.append(tio.RandomFlip(axes=(0, 1, 2))) transforms = tio.Compose(transforms_list) dataset = Dataset_promise( data=args.data, data_dir=args.data_dir, split=split, transform=transforms, image_size=args.image_size, args=args, ) batch_size = args.batch_size if split == 'train' else 1 if split == 'train': train_sampler = None shuffle = True if args.ddp: train_sampler = DistributedSampler(dataset) shuffle = False else: train_sampler = None shuffle = False pin_memory = True if split != 'train' and args.data == 'lits': pin_memory = False dataloader = Dataloader_promise( dataset=dataset, sampler=train_sampler, batch_size=batch_size, shuffle=shuffle, num_workers=args.num_workers, pin_memory=pin_memory, ) return dataloader def build_model(args, checkpoint=None): sam_model = sam_model_registry3D[args.model_type](checkpoint=checkpoint, args=args).to(args.device) if args.ddp: sam_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(sam_model) sam_model = DDP(sam_model, device_ids=[args.rank], output_device=args.rank) return sam_model