import torch from functools import partial from . import image_encoder, prompt_encoder, mask_decoder, sam3D, segmamba_encoder def build_sam3D_vit_b_ori(args=None, checkpoint=None): return _build_sam3D_ori( encoder_embed_dim=768, encoder_depth=12, encoder_num_heads=12, encoder_global_attn_indexes=[2, 5, 8, 11], checkpoint=checkpoint, args=args, ) def build_sam3D_segmamba(args=None, checkpoint=None): return _build_sam3D_segmamba( checkpoint=checkpoint, args=args, ) sam_model_registry3D = { "vit_b_ori": build_sam3D_vit_b_ori, "segmamba": build_sam3D_segmamba, } def _build_sam3D_ori( encoder_embed_dim, encoder_depth, encoder_num_heads, encoder_global_attn_indexes, checkpoint=None, args=None, ): prompt_embed_dim = 384 image_size = args.image_size vit_patch_size = 16 image_embedding_size = image_size // vit_patch_size sam = sam3D.Sam3D( image_encoder=image_encoder.ImageEncoderViT( args, depth=encoder_depth, embed_dim=encoder_embed_dim, img_size=image_size, mlp_ratio=4, norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), num_heads=encoder_num_heads, patch_size=vit_patch_size, qkv_bias=True, use_rel_pos=True, global_attn_indexes=encoder_global_attn_indexes, window_size=14, out_chans=prompt_embed_dim, ), prompt_encoder=prompt_encoder.PromptEncoder3D( embed_dim=prompt_embed_dim, image_embedding_size=(image_embedding_size, image_embedding_size, image_embedding_size), input_image_size=(image_size, image_size, image_size), mask_in_chans=16, num_multiple_outputs=args.num_multiple_outputs, multiple_outputs=args.multiple_outputs, ), mask_decoder=mask_decoder.MaskDecoder3D( args, transformer_dim=prompt_embed_dim, num_multiple_outputs=args.num_multiple_outputs, multiple_outputs=args.multiple_outputs, ), ) sam.eval() if checkpoint is not None: with open(checkpoint, "rb") as f: state_dict = torch.load(f, map_location=args.device) if args.use_sam3d_turbo and args.split == 'train': # Initialize a new state dictionary for the image_encoder encoder_state_dict = {} for key in state_dict['model_state_dict']: if key.startswith( 'image_encoder.'): # Adjust 'image_encoder.' based on how the keys are named in your state_dict # Remove the 'image_encoder.' prefix and save the modified key new_key = key[len('image_encoder.'):] encoder_state_dict[new_key] = state_dict['model_state_dict'][key] # Now load the adjusted state dict into the image_encoder part of your model sam.image_encoder.load_state_dict(encoder_state_dict, strict=False) else: sam.load_state_dict(state_dict['model_state_dict']) return sam def _build_sam3D_segmamba( checkpoint=None, args=None, ): prompt_embed_dim = 384 image_size = args.image_size image_embedding_size = image_size // 16 sam = sam3D.Sam3D( image_encoder=segmamba_encoder.ImageEncoderSegMamba( args, img_size=image_size, in_chans=1, embed_dim=prompt_embed_dim, ), prompt_encoder=prompt_encoder.PromptEncoder3D( embed_dim=prompt_embed_dim, image_embedding_size=(image_embedding_size, image_embedding_size, image_embedding_size), input_image_size=(image_size, image_size, image_size), mask_in_chans=16, num_multiple_outputs=args.num_multiple_outputs, multiple_outputs=args.multiple_outputs, ), mask_decoder=mask_decoder.MaskDecoder3D( args, transformer_dim=prompt_embed_dim, num_multiple_outputs=args.num_multiple_outputs, multiple_outputs=args.multiple_outputs, ), ) sam.eval() if checkpoint is not None: with open(checkpoint, "rb") as f: state_dict = torch.load(f, map_location=args.device) sam.load_state_dict(state_dict["model_state_dict"], strict=False) return sam