import inspect import torch.nn as nn try: from mamba_ssm import Mamba except ImportError as exc: raise ImportError( "mamba_ssm is required for SegMamba. Install it via the SegMamba repo (mamba/ setup.py install) " "or pip install mamba-ssm." ) from exc from .unet import TwoConv class MambaLayer(nn.Module): def __init__(self, dim, d_state=16, d_conv=4, expand=2, num_slices=None): super().__init__() self.dim = dim self.norm = nn.LayerNorm(dim) kwargs = { "d_model": dim, "d_state": d_state, "d_conv": d_conv, "expand": expand, } sig = inspect.signature(Mamba.__init__) if "bimamba_type" in sig.parameters: kwargs["bimamba_type"] = "v3" if num_slices is not None and "nslices" in sig.parameters: kwargs["nslices"] = num_slices self.mamba = Mamba(**kwargs) def forward(self, x): b, c = x.shape[:2] x_skip = x if c != self.dim: raise ValueError(f"Expected {self.dim} channels, got {c}") n_tokens = x.shape[2:].numel() img_dims = x.shape[2:] x_flat = x.reshape(b, c, n_tokens).transpose(-1, -2) x_norm = self.norm(x_flat) x_mamba = self.mamba(x_norm) out = x_mamba.transpose(-1, -2).reshape(b, c, *img_dims) return out + x_skip class MlpChannel(nn.Module): def __init__(self, hidden_size, mlp_dim): super().__init__() self.fc1 = nn.Conv3d(hidden_size, mlp_dim, 1) self.act = nn.GELU() self.fc2 = nn.Conv3d(mlp_dim, hidden_size, 1) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.fc2(x) return x class GSC(nn.Module): def __init__(self, in_channels): super().__init__() self.proj = nn.Conv3d(in_channels, in_channels, 3, 1, 1) self.norm = nn.InstanceNorm3d(in_channels) self.nonliner = nn.ReLU() self.proj2 = nn.Conv3d(in_channels, in_channels, 3, 1, 1) self.norm2 = nn.InstanceNorm3d(in_channels) self.nonliner2 = nn.ReLU() self.proj3 = nn.Conv3d(in_channels, in_channels, 1, 1, 0) self.norm3 = nn.InstanceNorm3d(in_channels) self.nonliner3 = nn.ReLU() self.proj4 = nn.Conv3d(in_channels, in_channels, 1, 1, 0) self.norm4 = nn.InstanceNorm3d(in_channels) self.nonliner4 = nn.ReLU() def forward(self, x): x_residual = x x1 = self.proj(x) x1 = self.norm(x1) x1 = self.nonliner(x1) x1 = self.proj2(x1) x1 = self.norm2(x1) x1 = self.nonliner2(x1) x2 = self.proj3(x) x2 = self.norm3(x2) x2 = self.nonliner3(x2) x = x1 + x2 x = self.proj4(x) x = self.norm4(x) x = self.nonliner4(x) return x + x_residual class MambaEncoder(nn.Module): def __init__( self, in_chans=1, depths=(2, 2, 2, 2), dims=(48, 96, 192, 384), drop_path_rate=0.0, layer_scale_init_value=1e-6, out_indices=(0, 1, 2, 3), img_size=128, ): super().__init__() self.downsample_layers = nn.ModuleList() stem = nn.Sequential( nn.Conv3d(in_chans, dims[0], kernel_size=7, stride=2, padding=3), ) self.downsample_layers.append(stem) for i in range(3): downsample_layer = nn.Sequential( nn.InstanceNorm3d(dims[i]), nn.Conv3d(dims[i], dims[i + 1], kernel_size=2, stride=2), ) self.downsample_layers.append(downsample_layer) self.stages = nn.ModuleList() self.gscs = nn.ModuleList() num_slices_list = [max(1, img_size // (2 ** (i + 1))) for i in range(4)] for i in range(4): gsc = GSC(dims[i]) stage = nn.Sequential( *[MambaLayer(dim=dims[i], num_slices=num_slices_list[i]) for _ in range(depths[i])] ) self.stages.append(stage) self.gscs.append(gsc) self.out_indices = out_indices self.mlps = nn.ModuleList() for i_layer in range(4): layer = nn.InstanceNorm3d(dims[i_layer]) self.add_module(f"norm{i_layer}", layer) self.mlps.append(MlpChannel(dims[i_layer], 2 * dims[i_layer])) def forward_features(self, x): outs = [] for i in range(4): x = self.downsample_layers[i](x) x = self.gscs[i](x) x = self.stages[i](x) if i in self.out_indices: norm_layer = getattr(self, f"norm{i}") x_out = norm_layer(x) x_out = self.mlps[i](x_out) outs.append(x_out) return tuple(outs) def forward(self, x): return self.forward_features(x) class ImageEncoderSegMamba(nn.Module): def __init__( self, args, img_size=128, in_chans=1, embed_dim=384, depths=(2, 2, 2, 2), dims=(48, 96, 192, 384), ): super().__init__() self.args = args self.img_size = img_size self.backbone = MambaEncoder( in_chans=in_chans, depths=depths, dims=dims, img_size=img_size, ) act = ("LeakyReLU", {"negative_slope": 0.1, "inplace": True}) norm = ("instance", {"affine": True}) self.stem = TwoConv(3, in_chans, 32, act, norm, True, 0.0) self.proj1 = self._proj_block(dims[0], 32) self.proj2 = self._proj_block(dims[1], 64) self.proj3 = self._proj_block(dims[2], 128) self.out_proj = None if dims[3] != embed_dim: self.out_proj = nn.Conv3d(dims[3], embed_dim, kernel_size=1, bias=False) self.out_norm = nn.InstanceNorm3d(embed_dim) def _proj_block(self, in_ch, out_ch): return nn.Sequential( nn.Conv3d(in_ch, out_ch, kernel_size=1, bias=False), nn.InstanceNorm3d(out_ch), nn.GELU(), ) def forward(self, x): x0 = self.stem(x) x1, x2, x3, x4 = self.backbone(x) f1 = self.proj1(x1) f2 = self.proj2(x2) f3 = self.proj3(x3) if self.out_proj is not None: x4 = self.out_norm(self.out_proj(x4)) feature_list = [x0, f1, f2, f3] return x4, feature_list