import nibabel as nib import numpy as np import torch import torch.nn.functional as F import surface_distance from surface_distance import metrics from src.utils.util import save_predict, save_csv def model_predict(args, img, prompt, img_encoder, prompt_encoder, mask_decoder): patch_size = args.rand_crop_size[0] device = args.device out = F.interpolate(img.float(), scale_factor=512 / patch_size, mode='trilinear') input_batch = out[0].transpose(0, 1) batch_features, feature_list = img_encoder(input_batch) feature_list.append(batch_features) #feature_list = feature_list[::-1] points_torch = prompt.transpose(0, 1) new_feature = [] for i, (feature, feature_decoder) in enumerate(zip(feature_list, prompt_encoder)): if i == 3: new_feature.append( feature_decoder(feature.to(device), points_torch.clone(), [patch_size, patch_size, patch_size]) ) else: new_feature.append(feature.to(device)) img_resize = F.interpolate(img[0, 0].permute(1, 2, 0).unsqueeze(0).unsqueeze(0).to(device), scale_factor=64/patch_size, mode="trilinear") new_feature.append(img_resize) masks = mask_decoder(new_feature, 2, patch_size//64) masks = masks.permute(0, 1, 4, 2, 3) return masks def get_points_prompt(args, points_dict, cumulative=False): """ get prompt tensor (input) with given point-locations """ patch_size = args.rand_crop_size[0] # the first point is always same, and we use it as anchor point, i.e. (x[0], y[0], z[0]) --> (206, 126, 320) # manually test with 1 prompt, 5 prompts and 10 prompts x, y, z = points_dict['x_location'], points_dict['y_location'], points_dict['z_location'] # x with size--> tensor([num_prompts, 1]) x_m = (torch.max(x) + torch.min(x)) // 2 y_m = (torch.max(y) + torch.min(y)) // 2 z_m = (torch.max(z) + torch.min(z)) // 2 # considered transpose in dataloader, e.g. match to real original images d_min = x_m - patch_size // 2 d_max = x_m + patch_size // 2 h_min = z_m - patch_size // 2 h_max = z_m + patch_size // 2 w_min = y_m - patch_size // 2 w_max = y_m + patch_size // 2 points = torch.cat([z - d_min, x - w_min, y - h_min], dim=1).unsqueeze(1).float() points_torch = points.to(args.device) patch_dict = {'w_min': w_min, 'w_max': w_max, 'h_min': h_min, 'h_max': h_max, 'd_min': d_min, 'd_max': d_max} return points_torch, patch_dict def get_final_prediction(args, img, seg_dict, points_dict, img_encoder, prompt_encoder_list, mask_decoder): seg = seg_dict['seg'] device = args.device patch_size = args.rand_crop_size[0] points_torch, patch_dict = get_points_prompt(args, points_dict) w_min, w_max = patch_dict['w_min'], patch_dict['w_max'] h_min, h_max = patch_dict['h_min'], patch_dict['h_max'] d_min, d_max = patch_dict['d_min'], patch_dict['d_max'] w_l = max(0, -w_min) w_r = max(0, w_max - points_dict['z_dimension']) h_l = max(0, -h_min) h_r = max(0, h_max - points_dict['y_dimension']) d_l = max(0, -d_min) d_r = max(0, d_max - points_dict['x_dimension']) d_min = max(0, d_min) h_min = max(0, h_min) w_min = max(0, w_min) img_patch = img[:, :, d_min:d_max, h_min:h_max, w_min:w_max].clone() prompt_patch = seg_dict['prompt'][:, :, d_min:d_max, h_min:h_max, w_min:w_max].clone() print(torch.unique(prompt_patch)) print(prompt_patch.sum()) l = len(torch.where(prompt_patch == 1)[0][10:]) sample = np.random.choice(np.arange(l), l, replace=True) x_negative, y_negative, z_negative = get_points(seg_dict['prompt'], sample, positive=True) points_negative = torch.cat([z_negative - d_min, x_negative - w_min, y_negative - h_min], dim=1).unsqueeze(1).float().to(args.device) points_torch = torch.cat([points_torch, points_negative], dim=0) #points_torch = points_torch[:1] print(points_torch.size()) # the pad follows the format (pad ordering) of torch # pad deals the points that are not included in the original patch (default size: 128^3) # if such case happens, the points values are negative # global query in prompt encoder is a learnable variable # this may because the point values represent the coordinate information with a shifted origin (-d_min, -h_min, -w_min) img_patch = F.pad(img_patch, (w_l, w_r, h_l, h_r, d_l, d_r)) # follow the format of torch pad function pred = model_predict(args, img_patch, points_torch, img_encoder, prompt_encoder_list, mask_decoder) pred = pred[:, :, d_l:patch_size - d_r, h_l:patch_size - h_r, w_l:patch_size - w_r] pred = F.softmax(pred, dim=1)[:, 1] # seg_pred is not meta tensor # seg_pred = torch.zeros(1, 1, points_dict['x_dimension'], points_dict['z_dimension'], points_dict['y_dimension']).to(device) # zeros_like carries meta tensor seg_pred = torch.zeros_like(img).to(device)[:, 0, :].unsqueeze(0) seg_pred[:, :, d_min:d_max, h_min:h_max, w_min:w_max] += pred final_pred = F.interpolate(seg_pred, size=seg.shape[2:], mode="trilinear") img_orig = F.interpolate(img, size=seg.shape[2:], mode="trilinear") # original_image = F.pad(input=img, pad=(0, 1, 0, 0), mode='constant', value=0) return final_pred, img_orig def get_points(prompt, sample, positive=True): value = 1 if positive else 0 z = torch.where(prompt == value)[3][sample].unsqueeze(1) # --> tensor([[x_value]]) instead of tensor([x_value]) x = torch.where(prompt == value)[2][sample].unsqueeze(1) # ignore: check datasets.py, --> self.spatial_index y = torch.where(prompt == value)[4][sample].unsqueeze(1) # consider x,y,z here is a,b,c. and abc need to match features after img_encoder with size (b,c,x,z,y) # e.g. a-->x, b-->z, c-->y # xyz are the coordinates after dataloader, e.g. without consider the self.spatial_index return x, y, z def get_points_location(args, prompt, negative=False): """ use this to get anchor points """ np.random.seed(args.seed) l = len(torch.where(prompt == 1)[0]) sample = np.random.choice(np.arange(l), args.num_prompts, replace=True) x, y, z = get_points(prompt, sample) if negative: l = len(torch.where(prompt == 0)[0]) sample = np.random.choice(np.arange(l), args.num_prompts, replace=True) x_negative, y_negative, z_negative = get_points(prompt, sample, positive=False) x = torch.cat([x, x_negative], dim=0) y = torch.cat([y, y_negative], dim=0) z = torch.cat([z, z_negative], dim=0) # this x, y, z location follows the original after change spatial_index points_dict = {'x_location': x, 'y_location': y, 'z_location': z, 'x_dimension': prompt.shape[2], 'y_dimension': prompt.shape[3], 'z_dimension': prompt.shape[4]} return points_dict def get_input(args, img, seg, negative=False): seg = seg.float().unsqueeze(0) seg = seg.to(args.device) img = img.to(args.device) prompt = F.interpolate(seg, img.shape[2:], mode="nearest") points_dict = get_points_location(args, prompt, negative=negative) seg_dict = {'seg': seg, 'prompt': prompt} return img, seg_dict, points_dict def calculate_cost(args, prediction, ground_truth, loss_function, spacing, loss_list, loss_nsd_list): loss = 1 - loss_function(prediction, ground_truth) loss_value = loss.squeeze(0).squeeze(0).squeeze(0).squeeze(0).squeeze(0).detach().cpu().numpy() ssd = surface_distance.compute_surface_distances( (ground_truth == 1)[0, 0].cpu().numpy(), (prediction == 1)[0, 0].cpu().numpy(), spacing_mm=spacing[0].numpy() ) nsd = metrics.compute_surface_dice_at_tolerance(ssd, args.tolerance) loss_list.append(loss_value) loss_nsd_list.append(nsd) return loss_list, loss_nsd_list, loss_value, nsd def tester(args, logger, model_dict, test_data, loss_list, loss_nsd_list, loss_function): img_encoder, prompt_encoder_list, mask_decoder = model_dict['img_encoder'], model_dict['prompt_encoder_list'], \ model_dict['mask_decoder'] patient_list = [] for idx, (img, seg, spacing) in enumerate(test_data): print( 'current / total subjects: {} / {}' .format(idx + 1, len(test_data.dataset.img_dict))) image_path = test_data.dataset.img_dict[idx] image_data = nib.load(image_path) if args.data == 'pancreas': patient_name = test_data.dataset.img_dict[idx].split('/')[-2] + '.nii.gz' else: patient_name = test_data.dataset.img_dict[idx].split('/')[-1] patient_list.append(patient_name) img, seg_dict, points_dict = get_input(args, img, seg, negative=False) # get input and point prompt # pred final_pred, img_orig_space = get_final_prediction(args, img, seg_dict, points_dict, img_encoder, prompt_encoder_list, mask_decoder) masks = final_pred > 0.5 loss_list, loss_nsd_list, loss, nsd = calculate_cost(args, masks, seg_dict['seg'], loss_function, spacing, loss_list, loss_nsd_list) # print(1 - loss_function(masks, seg)) logger.info( " Case {}/{} {} - Dice {:.6f} | NSD {:.6f}".format( idx + 1, len(test_data.dataset.img_dict), test_data.dataset.img_dict[idx], loss.item(), nsd)) if args.save_predictions: save_predict(args, logger, final_pred, seg_dict['seg'], masks, points_dict, idx, test_data, image_data, patient_name) # coordinates are recorded in the log file # all subject mean_dice, mean_nsd = np.mean(loss_list), np.mean(loss_nsd_list) logger.info("- Test metrics Dice: " + str(mean_dice)) logger.info("- Test metrics NSD: " + str(mean_nsd)) logger.info("----------------------") if args.save_csv: save_csv(args, logger, patient_list, loss_list, loss_nsd_list) return loss_list, loss_nsd_list, patient_list