import torch import torch.nn.functional as F # from src.utils.util import get_points import numpy as np def validater(args, val_data, logger, epoch_num, sam, loss_validation): patch_size = args.rand_crop_size[0] device = args.device with torch.no_grad(): loss_summary = [] #for idx, data in enumerate(val_data): #img, label = data['image'].to(device), data['label'].to(device) for idx, (image, label, _) in enumerate(val_data): # import torchio as tio # norm_transform = tio.ZNormalization(masking_method=lambda x: x > 0) # image = norm_transform(image.squeeze(dim=1)) # (N, C, W, H, D) # image = image.unsqueeze(dim=1) image, label = image.to(device), label.to(device) image_embedding = sam.image_encoder(image) prev_masks = interaction(args, sam, image_embedding, label, num_clicks=11) masks = prev_masks loss = loss_validation(masks, label) loss_summary.append(loss.detach().cpu().numpy()) logger.info( 'epoch: {}/{}, iter: {}/{}'.format(epoch_num, args.max_epoch, idx, len(val_data)) + ": loss:" + str( loss_summary[-1].flatten()[0])) logger.info("- Val metrics: " + str(np.mean(loss_summary))) return loss_summary def get_next_click3D_torch_2(prev_seg, gt_semantic_seg): mask_threshold = 0.5 batch_points = [] batch_labels = [] # dice_list = [] pred_masks = (prev_seg > mask_threshold) true_masks = (gt_semantic_seg > 0) fn_masks = torch.logical_and(true_masks, torch.logical_not(pred_masks)) fp_masks = torch.logical_and(torch.logical_not(true_masks), pred_masks) to_point_mask = torch.logical_or(fn_masks, fp_masks) for i in range(gt_semantic_seg.shape[0]): points = torch.argwhere(to_point_mask[i]) point = points[np.random.randint(len(points))] # import pdb; pdb.set_trace() if fn_masks[i, 0, point[1], point[2], point[3]]: is_positive = True else: is_positive = False bp = point[1:].clone().detach().reshape(1, 1, 3) bl = torch.tensor([int(is_positive), ]).reshape(1, 1) batch_points.append(bp) batch_labels.append(bl) return batch_points, batch_labels def get_points(args, prev_masks, gt3D, click_points, click_labels): batch_points, batch_labels = get_next_click3D_torch_2(prev_masks, gt3D) points_co = torch.cat(batch_points, dim=0).to(args.device) points_la = torch.cat(batch_labels, dim=0).to(args.device) click_points.append(points_co) click_labels.append(points_la) points_multi = torch.cat(click_points, dim=1).to(args.device) labels_multi = torch.cat(click_labels, dim=1).to(args.device) # if self.args.multi_click: # points_input = points_multi # labels_input = labels_multi # else: points_input = points_co labels_input = points_la return points_input, labels_input, click_points, click_labels def batch_forward(args, sam_model, image_embedding, gt3D, low_res_masks, points=None): sparse_embeddings, dense_embeddings = sam_model.prompt_encoder( points=points, boxes=None, masks=low_res_masks, ) low_res_masks, iou_predictions = sam_model.mask_decoder( image_embeddings=image_embedding.to(args.device), # (B, 256, 64, 64) image_pe=sam_model.prompt_encoder.get_dense_pe(), # (1, 256, 64, 64) sparse_prompt_embeddings=sparse_embeddings, # (B, 2, 256) dense_prompt_embeddings=dense_embeddings, # (B, 256, 64, 64) multimask_output=False, ) prev_masks = F.interpolate(low_res_masks, size=gt3D.shape[-3:], mode='trilinear', align_corners=False) return low_res_masks, prev_masks def interaction(args, sam_model, image_embedding, gt3D, num_clicks): # return_loss = 0 prev_masks = torch.zeros_like(gt3D).to(gt3D.device) random_insert = np.random.randint(2, 9) click_points, click_labels = [], [] for num_click in range(num_clicks): points_input, labels_input, click_points, click_labels = get_points(args, prev_masks, gt3D, click_points, click_labels) if num_click == random_insert or num_click == num_clicks - 1: prev_masks = batch_forward(args, sam_model, image_embedding, gt3D, prev_masks, points=None) else: prev_masks = batch_forward(args, sam_model, image_embedding, gt3D, prev_masks, points=[points_input, labels_input]) # loss = self.seg_loss(prev_masks, gt3D) # return_loss += loss #return prev_masks, return_loss return prev_masks