import logging import os import sys ROOT_DIR = os.path.dirname(os.path.dirname(__file__)) if ROOT_DIR not in sys.path: sys.path.insert(0, ROOT_DIR) from src.utils.util import setup_logger from src.config.config_args import * from src.processor.trainer import Trainer import torch.multiprocessing as mp import torch import torch.distributed as dist import numpy as np import random from torch.backends import cudnn def init_seeds(seed=0, cuda_deterministic=True): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html if cuda_deterministic: # slower, more reproducible cudnn.deterministic = True cudnn.benchmark = False else: # faster, less reproducible cudnn.deterministic = False cudnn.benchmark = True def device_config(args): try: args.nodes = 1 args.ngpus_per_node = len(args.gpu_ids) args.world_size = args.nodes * args.ngpus_per_node except RuntimeError as e: print(e) def setup(rank, world_size): # initialize the process group dist.init_process_group( backend='nccl', #init_method=f'tcp://127.0.0.1:{args.port}', init_method=f'tcp://127.0.0.1:12361', world_size=world_size, rank=rank ) def main_worker(rank, args): setup(rank, args.world_size) torch.cuda.set_device(rank) args.num_workers = int(args.num_workers / args.ngpus_per_node) args.device = torch.device(f"cuda:{rank}") args.rank = rank init_seeds(1 + rank) log_name = 'train_' + args.save_name setup_logger(logger_name=log_name, root=args.save_dir, level=logging.INFO if rank in [-1, 0] else logging.WARN, screen=True, tofile=True) logger = logging.getLogger(log_name) logger.info(str(args)) Trainer(args, logger).run() cleanup() def main(): args = parser.parse_args() check_and_setup_parser(args) if args.ddp: mp.set_sharing_strategy('file_system') device_config(args) mp.spawn( main_worker, nprocs=args.world_size, args=(args, ) ) else: log_name = 'train_' + args.save_name setup_logger(logger_name=log_name, root=args.save_dir, screen=True, tofile=True) logger = logging.getLogger(log_name) logger.info(str(args)) args.rank = -1 Trainer(args, logger).run(), def cleanup(): dist.destroy_process_group() if __name__ == "__main__": main()