from typing import Union, Tuple, List, Optional import numpy as np import torch import kornia import cv2 import src.voxynth.noise as v_noise import src.voxynth.transform as v_transform import os # Prevent neurite from trying to load tensorflow os.environ['NEURITE_BACKEND'] = 'pytorch' def _thin_mask(mask_np: np.ndarray) -> np.ndarray: if hasattr(cv2, "ximgproc") and hasattr(cv2.ximgproc, "thinning"): return cv2.ximgproc.thinning(mask_np) try: from skimage.morphology import skeletonize except Exception as exc: raise AttributeError( "cv2.ximgproc.thinning is unavailable and scikit-image is missing; " "install opencv-contrib-python or scikit-image." ) from exc return (skeletonize(mask_np.astype(bool)).astype(np.uint8) * 255) # ----------------------------------------------------------------------------- # Parent class # ----------------------------------------------------------------------------- class WarpScribble: """ Parent scribble class with shared functions for generating noise masks (useful for breaking up scribbles) and applying deformation fields (to warp scribbles) """ def __init__(self, warp: bool = True, warp_smoothing: Union[int, Tuple[int], List[int]] = (4, 16), warp_magnitude: Union[int, Tuple[int], List[int]] = (1, 6), mask_smoothing: Union[int, Tuple[int], List[int]] = (4, 16), ): if isinstance(warp_smoothing, int): warp_smoothing = [warp_smoothing, warp_smoothing] if isinstance(warp_magnitude, int): warp_magnitude = [warp_magnitude, warp_magnitude] # Warp settings self.warp = warp self.warp_smoothing = list(warp_smoothing) self.warp_magnitude = list(warp_magnitude) # Noise mask settings self.mask_smoothing = mask_smoothing def noise_mask(self, shape: Union[Tuple[int], List[int]] = (8, 128, 128), device=None): """ Get a random binary mask by thresholding smoothed noise. The mask is used to break up the scribbles """ if isinstance(self.mask_smoothing, tuple): get_smoothing = lambda: np.random.uniform(*self.mask_smoothing) else: get_smoothing = lambda: self.mask_smoothing noise = torch.stack([ v_noise.perlin(shape=shape[-2:], smoothing=get_smoothing(), magnitude=1, device=device) for _ in range(shape[0]) ]) # shape: b x H x W noise_mask = (noise > 0.0).int().unsqueeze(1) return noise_mask # shaoe: b x 1 x H x W def apply_warp(self, x: torch.Tensor): """ Warp a given mask x using a random deformation field """ if x.sum() > 0: # warp scribbles using a deformation field deformation_field = v_transform.random_transform( shape=x.shape[-2:], affine_probability=0.0, warp_probability=1.0, warp_integrations=0, warp_smoothing_range=self.warp_smoothing, warp_magnitude_range=self.warp_magnitude, voxsize=1, device=x.device, isdisp=False ) warped = v_transform.spatial_transform(x, trf=deformation_field, isdisp=False) if warped.sum() == 0: return x else: return (warped - warped.min()) / (warped.max() - warped.min()) else: # Don't need to warp if mask is empty return x def batch_scribble(self, mask: torch.Tensor, n_scribbles: int = 1): """ Simulate scribbles for a batch of examples (mask). """ raise NotImplementedError def __call__(self, mask: torch.Tensor, n_scribbles: int = 1) -> torch.Tensor: """ Args: mask: (b,1,H,W) or (1,H,W) mask in [0,1] to sample scribbles from Returns: scribble_mask: (b,1,H,W) or (1,H,W) mask(s) of scribbles on [0,1] """ assert len(mask.shape) in [3, 4], f"mask must be b x 1 x h x w or 1 x h x w. currently {mask.shape}" if len(mask.shape) == 3: # shape: 1 x h x w return self.batch_scribble(mask[None, ...], n_scribbles=n_scribbles)[0, ...] else: # shape: b x 1 x h x w return self.batch_scribble(mask, n_scribbles=n_scribbles) # ----------------------------------------------------------------------------- # Line Scribbles # ----------------------------------------------------------------------------- class LineScribble(WarpScribble): """ Generates scribbles by 1) drawing lines connecting random points on the mask 2) warping with a random deformation field 3) then correcting any scribbles outside the mask 5) optionally, limiting the max area of scribbles to k pixels """ def __init__(self, # Warp settings warp: bool = True, warp_smoothing: Union[int, Tuple[int], List[int]] = (4, 16), warp_magnitude: Union[int, Tuple[int], List[int]] = (1, 6), mask_smoothing: Union[int, Tuple[int], List[int]] = (4, 16), # Line scribble settings thickness: int = 1, preserve_scribble: bool = True, # if True, prevents empty scribble masks from being returned max_pixels: Optional[int] = None, # per "scribble" max_pixels_smooth: Optional[int] = 42, # Viz show: bool = False ): super().__init__( warp=warp, warp_smoothing=warp_smoothing, warp_magnitude=warp_magnitude, mask_smoothing=mask_smoothing, ) self.thickness = thickness self.preserve_scribble = preserve_scribble self.max_pixels = max_pixels self.max_pixels_smooth = max_pixels_smooth self.show = show def batch_scribble(self, mask: torch.Tensor, n_scribbles: int = 1) -> torch.Tensor: """ Args: mask: (b,1,H,W) mask in [0,1] to sample scribbles from n_scribbles: number of line scribbles to sample initially Returns: scribble_mask: (b,1,H,W) mask(s) of scribbles in [0,1] """ bs = mask.shape[0] # Points to sample line endpoints from points = torch.nonzero(mask[:, 0, ...]) def sample_lines(indices): image = np.zeros(mask.shape[-2:] + (1,)) if len(indices) > 0: # Sample points for each example in the batch idx = np.random.randint(low=0, high=len(indices), size=2 * n_scribbles) endpoints = points[indices, 1:][idx, 0, ...] # Flip order of coordinates to be xy endpoints = torch.flip(endpoints, dims=(1,)).cpu().numpy() # Draw lines between the sample points for i in range(n_scribbles): image = cv2.line(image, tuple(endpoints[i * 2]), tuple(endpoints[i * 2 + 1]), color=1, thickness=1) return torch.from_numpy(image) # shape: H x W x 1 scribbles = torch.stack([ sample_lines(torch.argwhere(points[:, 0] == i)) for i in range(bs) ]).to(mask.device).moveaxis(-1, 1).float() # shape: b x 1 x H x W if self.warp: warped_scribbles = torch.stack( [self.apply_warp(scribbles[b, ...]) for b in range(bs)]) # shape: b x 1 x H x W else: warped_scribbles = scribbles # Remove lines outside the mask corrected_warped_scribbles = mask * warped_scribbles if self.preserve_scribble: # If none of the scribble falls in the mask after warping, undo warping idx = torch.where(torch.sum(corrected_warped_scribbles, dim=(1, 2, 3)) == 0) corrected_warped_scribbles[idx] = mask[idx] * scribbles[idx] if self.max_pixels is not None: noise = torch.stack([ v_noise.perlin(shape=mask.shape[-2:], smoothing=self.max_pixels_smooth, magnitude=1, device=mask.device) for _ in range(bs) ]).unsqueeze(1) # shape: b x 1 x H x W # Shift all noise to be positive if noise.min() < 0: noise = noise - noise.min() # Get the top k pixels flat_mask = (noise * corrected_warped_scribbles).view(bs, -1) vals, idx = flat_mask.topk(k=(self.max_pixels * n_scribbles), dim=1) binary_mask = torch.zeros_like(flat_mask) binary_mask.scatter_(dim=1, index=idx, src=torch.ones_like(flat_mask)) corrected_warped_scribbles = binary_mask.view(*mask.shape) * corrected_warped_scribbles if self.show: import neurite as ne import matplotlib.pyplot as plt from .plot import show_scribbles if self.max_pixels is not None: binary_mask = binary_mask.reshape(*mask.shape) tensors = [mask, scribbles, warped_scribbles, noise, binary_mask, corrected_warped_scribbles, mask] titles = ["Mask", "Lines", "Warped Lines", 'Smooth Noise', 'Top k Pixels', 'Corrected Scribbles', 'Corrected Scribbles'] else: tensors = [mask, scribbles, warped_scribbles, corrected_warped_scribbles, mask] titles = ["Mask", "Lines", "Warped Lines", 'Corrected Scribbles', 'Corrected Scribbles'] fig, axes = ne.plot.slices( sum([[x[i, 0, ...].cpu() for x in tensors] for i in range(bs)], []), sum([titles for _ in range(bs)], []), show=False, grid=(bs, len(titles)), width=3 * len(titles), do_colorbars=False ) if bs > 1: for i in range(bs): show_scribbles(corrected_warped_scribbles[i, 0, ...].cpu(), axes[i, -1]) else: show_scribbles(corrected_warped_scribbles[0, 0, ...].cpu(), axes[-1]) plt.show() return corrected_warped_scribbles # b x 1 x H x W # ----------------------------------------------------------------------------- # Median Axis Scribble # ----------------------------------------------------------------------------- class CenterlineScribble(WarpScribble): """ Generates scribbles by 1) skeletonizing the mask 2) chopping up with a random noise mask 3) warping with a random deformation field 4) then correcting any scribbles that fall outside the mask 5) optionally, limiting the max area of scribbles to k pixels """ def __init__(self, # Warp settings warp: bool = True, warp_smoothing: Union[int, Tuple[int], List[int]] = (4, 16), warp_magnitude: Union[int, Tuple[int], List[int]] = (1, 6), mask_smoothing: Union[int, Tuple[int], List[int]] = (4, 16), # Thickness of skeleton dilate_kernel_size: Optional[int] = None, preserve_scribble: bool = True, # if True, prevents empty scribble masks from being returned max_pixels: Optional[int] = None, # per "scribble" max_pixels_smooth: int = 42, # Viz show: bool = False ): super().__init__( warp=warp, warp_smoothing=warp_smoothing, warp_magnitude=warp_magnitude, mask_smoothing=mask_smoothing, ) self.dilate_kernel_size = dilate_kernel_size self.preserve_scribble = preserve_scribble self.max_pixels = max_pixels self.max_pixels_smooth = max_pixels_smooth self.show = show def batch_scribble(self, mask: torch.Tensor, n_scribbles: Optional[int] = 1): """ Simulate scribbles for a batch of examples. Args: mask: (b,1,H,W) mask in [0,1] to sample scribbles from. torch.int32 n_scribbles: (int) only used when max_pixels is set as a multiplier for total area of the scribbles currently, this argument does not control the number of components in the scribble mask Returns: scribble_mask: (b,1,H,W) mask(s) of scribbles in [0,1] """ assert len(mask.shape) == 4, f"mask must be b x 1 x h x w. currently {mask.shape}" bs = mask.shape[0] mask_w_border = 255 * mask.clone().moveaxis(1, -1) mask_w_border[:, :, 0, :] = 0 mask_w_border[:, :, -1, :] = 0 mask_w_border[:, 0, :, :] = 0 mask_w_border[:, -1, :, :] = 0 # Skeletonize the mask skeleton = torch.from_numpy( np.stack([ _thin_mask(mask_w_border[i, ...].cpu().numpy().astype(np.uint8)) / 255 for i in range(bs) ]) ).squeeze(-1).unsqueeze(1).to(mask.device).float() # shape: b x 1 x H x W if self.dilate_kernel_size is not None: # Dilate the boundary to make it thicker #k = _as_single_val(self.dilate_kernel_size) k = 3 if k > 0: kernel = torch.ones((k, k), device=mask.device) dilated_skeleton = kornia.morphology.dilation(skeleton, kernel=kernel, engine='convolution') else: dilated_skeleton = skeleton noise_mask = self.noise_mask(shape=mask.shape, device=mask.device) # Break up the boundary contours scribbles = (dilated_skeleton * noise_mask) # shape: b x 1 x H x W if self.preserve_scribble: # If none of the scribbles fall in the random mask, keep the whole scribble idx = torch.where(torch.sum(scribbles, dim=(1, 2, 3)) == 0) scribbles[idx] = skeleton[idx] if self.warp: warped_scribbles = torch.stack([self.apply_warp(scribbles[b, ...]) for b in range(bs)]) else: warped_scribbles = scribbles corrected_warped_scribbles = mask * warped_scribbles # shape: b x 1 x H x W if self.preserve_scribble: # If none of the scribble falls in the mask after warping, remove the warping idx = torch.where(torch.sum(corrected_warped_scribbles, dim=(1, 2, 3)) == 0) corrected_warped_scribbles[idx] = mask[idx] * scribbles[idx] if self.max_pixels is not None: noise = torch.stack([ v_noise.perlin(shape=mask.shape[-2:], smoothing=self.max_pixels_smooth, magnitude=1, device=mask.device) for _ in range(bs) ]).unsqueeze(1) # shape: b x 1 x H x W # Shift all noise mask to be positive if noise.min() < 0: noise = noise - noise.min() flat_mask = (noise * corrected_warped_scribbles).view(bs, -1) vals, idx = flat_mask.topk(k=(self.max_pixels * n_scribbles), dim=1) binary_mask = torch.zeros_like(flat_mask) binary_mask.scatter_(dim=1, index=idx, src=torch.ones_like(flat_mask)) corrected_warped_scribbles = binary_mask.view(*mask.shape) * corrected_warped_scribbles if self.show: import neurite as ne from .plot import show_scribbles import matplotlib.pyplot as plt tensors = [mask, skeleton] titles = ["Input Mask", "Skeleton"] if self.dilate_kernel_size is not None: tensors.append(dilated_skeleton) titles.append('Dilated Skeleton') if self.max_pixels is not None: tensors += [noise_mask, scribbles, warped_scribbles, noise, binary_mask.reshape(*mask.shape), corrected_warped_scribbles, mask] titles += ["Noise Mask", 'Broken Skeleton', 'Warped Scribbles', 'Smooth Noise', 'Top k Pixels', 'Corrected Scribbles', 'Corrected Scribbles'] else: tensors += [noise_mask, scribbles, warped_scribbles, corrected_warped_scribbles, mask] titles += ["Noise Mask", 'Broken Skeleton', 'Warped Scribbles', 'Corrected Scribbles', 'Corrected Scribbles'] fig, axes = ne.plot.slices( sum([[x[i, ...].squeeze().cpu() for x in tensors] for i in range(bs)], []), sum([titles for _ in range(bs)], []), show=False, grid=(bs, len(titles)), width=3 * len(titles) ) if bs > 1: for i in range(bs): show_scribbles(corrected_warped_scribbles[i, 0, ...].cpu(), axes[i, -1]) else: show_scribbles(corrected_warped_scribbles[0, 0, ...].cpu(), axes[-1]) plt.show() return corrected_warped_scribbles # ----------------------------------------------------------------------------- # Contour Scribbles # ----------------------------------------------------------------------------- class ContourScribble(WarpScribble): """ Generates scribbles by 1) blurring and thresholding the mask, then getting the contours 2) chopping up the contour scribbles with a random noise mask 3) warping with a random deformation field 4) then correcting any scribbles that fall outside the mask 5) optionally, limiting the max area of scribbles to k pixels """ def __init__(self, # Warp settings warp: bool = True, warp_smoothing: Union[int, Tuple[int], List[int]] = (4, 16), warp_magnitude: Union[int, Tuple[int], List[int]] = (1, 6), mask_smoothing: Union[int, Tuple[int], List[int]] = (4, 16), # Blur settings blur_kernel_size: int = 33, blur_sigma: Union[float, Tuple[float], List[float]] = (5.0, 20.0), # Other settings dilate_kernel_size: Optional[Union[int, Tuple[int]]] = None, preserve_scribble: bool = True, # if True, prevents empty scribble masks from being returned max_pixels: Optional[int] = None, # per "scribble" max_pixels_smooth: Optional[int] = 42, # Viz show: bool = False ): super().__init__( warp=warp, warp_smoothing=warp_smoothing, warp_magnitude=warp_magnitude, mask_smoothing=mask_smoothing, ) # Blur settings if isinstance(blur_sigma, float) or isinstance(blur_sigma, int): blur_sigma = (blur_sigma, blur_sigma + 1e-7) self.blur_fn = kornia.augmentation.RandomGaussianBlur( kernel_size=(blur_kernel_size, blur_kernel_size), sigma=blur_sigma, p=1. ) # Line thickness self.dilate_kernel_size = dilate_kernel_size # Corrections self.preserve_scribble = preserve_scribble self.max_pixels = max_pixels self.max_pixels_smooth = max_pixels_smooth # Viz self.show = show def batch_scribble(self, mask: torch.Tensor, n_scribbles: Optional[int] = 1): """ Args: mask: (b,1,H,W) mask in [0,1] to sample scribbles from n_scribbles: (int) only used when max_pixels is set as a multiplier for total area of the scribbles currently, this argument does not control the number of components in the scribble mask Returns: scribble_mask: (b,1,H,W) mask(s) of scribbles in [0,1] """ assert len(mask.shape) == 4, f"mask must be b x 1 x h x w. currently {mask.shape}" bs = mask.shape[0] rev_mask = (1 - mask) blur_mask = self.blur_fn(rev_mask) corrected_blur_mask = torch.reshape(torch.maximum(blur_mask, rev_mask), (bs, -1)) # Randomly sample a threshold for each example min_bs = corrected_blur_mask.min(1)[0].cpu().numpy() binary_mask = (torch.reshape(mask, (bs, -1)) > 0) * corrected_blur_mask max_bs = torch.reshape(binary_mask, (bs, -1)).max(1)[0].cpu().numpy() thresh = torch.from_numpy(np.random.uniform(min_bs, max_bs, size=bs)).to(mask.device) # Apply threshold thresh = thresh[..., None].repeat(1, mask.shape[-2] * mask.shape[-1]) binary_blur_mask = (corrected_blur_mask <= thresh).view(mask.shape).float() # Use filter to get contours _, boundary = kornia.filters.canny(binary_blur_mask, hysteresis=False) if self.dilate_kernel_size is not None: # Dilate the boundary to make it thicker #k = _as_single_val(self.dilate_kernel_size) k = 0 if k > 0: kernel = torch.ones((k, k), device=boundary.device) dilated_boundary = kornia.morphology.dilation(boundary, kernel=kernel, engine='convolution') else: dilated_boundary = boundary else: dilated_boundary = boundary # Get noise mask to break up the contours noise_mask = self.noise_mask(shape=mask.shape, device=mask.device) # Break up the boundary contours scribbles = dilated_boundary * noise_mask # shape: b x 1 x H x W if self.preserve_scribble: # If none of the scribbles fall in the noise mask, keep the whole scribble idx = torch.where(torch.sum(scribbles, dim=(1, 2, 3)) == 0)[0] scribbles[idx, ...] = dilated_boundary[idx, ...] if self.warp: warped_scribbles = torch.stack([self.apply_warp(scribbles[b, ...]) for b in range(bs)]) else: warped_scribbles = scribbles # Remove scribbles that are outside the mask corrected_warped_scribbles = mask * warped_scribbles if self.preserve_scribble: # If none of the scribble falls in the mask after warping, remove the warping idx = torch.where(torch.sum(corrected_warped_scribbles, dim=(1, 2, 3)) == 0)[0] corrected_warped_scribbles[idx, ...] = mask[idx, ...] * scribbles[idx, ...] if self.max_pixels is not None: noise = torch.stack([ v_noise.perlin(shape=mask.shape[-2:], smoothing=self.max_pixels_smooth, magnitude=1, device=mask.device) for _ in range(bs) ]).unsqueeze(1) # shape: b x 1 x H x W # Shift noise mask to be positive if noise.min() < 0: noise = noise - noise.min() flat_mask = (noise * corrected_warped_scribbles).view(bs, -1) vals, idx = flat_mask.topk(k=(self.max_pixels * n_scribbles), dim=1) binary_mask = torch.zeros_like(flat_mask) binary_mask.scatter_(dim=1, index=idx, src=torch.ones_like(flat_mask)) corrected_warped_scribbles = binary_mask.view(*mask.shape) * corrected_warped_scribbles return corrected_warped_scribbles if __name__ == '__main__': import torch import torch.distributed as dist import numpy as np import random from torch.backends import cudnn def init_seeds(seed=0, cuda_deterministic=True): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html if cuda_deterministic: # slower, more reproducible cudnn.deterministic = True cudnn.benchmark = False else: # faster, less reproducible cudnn.deterministic = False cudnn.benchmark = True import SimpleITK as sitk import torchio as tio init_seeds() mask_path = '/home/hao/Hao/data/0SAM_data/Task10_colon/labelsTr/colon_001.nii.gz' sitk_label = sitk.ReadImage(mask_path) subject = tio.Subject( image=tio.ScalarImage.from_sitk(sitk_label), label=tio.LabelMap.from_sitk(sitk_label), ) transforms_list = [ tio.Resample(1), ] transforms_list.append(tio.CropOrPad(mask_name='label', target_shape=(128,64,96))) transforms = tio.Compose(transforms_list) subject = transforms(subject) mask = subject.label.data.clone().detach() # mask[:, :, :, 39] = 0 # mask[:, 68:72, 26:30, 39] = 1 # mask[mask > 0] = 0 # print(torch.unique(mask)) sitk_label_new = mask.squeeze(0) result_image = sitk.GetImageFromArray(sitk_label_new) sitk.WriteImage(result_image, './maskresult.nii.gz') mask = mask.permute(3, 0, 1, 2) #mask = (torch.ones_like(mask) - mask).permute(3, 0, 1, 2) import time a = time.time() #CenterlineScribble #LineScribble ContourScribble_mask = LineScribble().batch_scribble(mask) print(time.time() - a ) sitk_label_new = ContourScribble_mask.permute(1, 2, 3, 0).squeeze(0) sitk_label_new[sitk_label_new > 0] = 1 result_image = sitk.GetImageFromArray(sitk_label_new) sitk.WriteImage(result_image, './result.nii.gz') print(1)