import logging import os import time import torch import shutil import numpy as np import nibabel as nib import pandas from typing import List, Tuple, Type, Union def save_checkpoint(state, is_best, checkpoint): filepath_last = os.path.join(checkpoint, "last.pth.tar") filepath_best = os.path.join(checkpoint, "best.pth.tar") if not os.path.exists(checkpoint): print("Checkpoint Directory does not exist! Masking directory {}".format(checkpoint)) os.mkdir(checkpoint) else: print("Checkpoint Directory exists!") torch.save(state, filepath_last) if is_best: if os.path.isfile(filepath_best): os.remove(filepath_best) shutil.copyfile(filepath_last, filepath_best) def setup_logger(logger_name, root, level=logging.INFO, screen=False, tofile=False): """set up logger""" lg = logging.getLogger(logger_name) formatter = logging.Formatter("[%(asctime)s.%(msecs)03d] %(message)s", datefmt="%H:%M:%S") lg.setLevel(level) log_time = get_timestamp() if tofile: log_file = os.path.join(root, "{}_{}.log".format(logger_name, log_time)) fh = logging.FileHandler(log_file, mode="w") fh.setFormatter(formatter) lg.addHandler(fh) if screen: sh = logging.StreamHandler() sh.setFormatter(formatter) lg.addHandler(sh) return lg, log_time def get_timestamp(): timestampTime = time.strftime("%H%M%S") timestampDate = time.strftime("%Y%m%d") return timestampDate + "-" + timestampTime def save_csv(args, logger, patient_list, loss, loss_nsd, ): save_predict_dir = os.path.join(args.save_base_dir, 'csv_file') if not os.path.exists(save_predict_dir): os.makedirs(save_predict_dir) df_dict = {'patient': patient_list, 'dice': loss, 'nsd': loss_nsd, } df = pandas.DataFrame(df_dict) df.to_csv(os.path.join(save_predict_dir, 'prompt_' + str(args.num_prompts) + '_' + str(args.save_name) + '.csv'), index=False) logger.info("- CSV saved") def save_image(save_array, test_data, image_data, save_prediction_path): nib.save(nib.Nifti1Image(save_array[0, 0, :].permute(test_data.dataset.spatial_index).cpu().numpy(), image_data.affine, image_data.header), save_prediction_path) def _bbox_mask(mask_volume: torch.Tensor, diff=1, mode='train', dynamic=False, max_diff=10, return_extend=False) -> torch.Tensor: bbox_coords = [] for volume in mask_volume: i_any = volume.any(dim=2).any(dim=1) j_any = volume.any(dim=2).any(dim=0) k_any = volume.any(dim=1).any(dim=0) i_min, i_max = torch.where(i_any)[0][[0, -1]] j_min, j_max = torch.where(j_any)[0][[0, -1]] k_min, k_max = torch.where(k_any)[0][[0, -1]] # i_max, j_max, k_max = i_max + diff, j_max + diff, k_max + diff # bb = torch.tensor([[i_min, j_min, k_min, i_max, j_max, k_max]]) if dynamic and mode == 'train': # diff_ = np.random.choice(range(-max_diff, max_diff), size=6, replace=True) diff_ = np.random.choice(range(0, max_diff), size=6, replace=True) if max(0, i_min - diff_[0]) < min(i_max + diff_[1], 126): i_min, i_max = max(0, i_min - diff_[0]), min(i_max + diff_[1], 126) if max(0, j_min - diff_[2]) < min(j_max + diff_[3], 126): j_min, j_max = max(0, j_min - diff_[2]), min(j_max + diff_[3], 126) if max(0, k_min - diff_[4]) < min(k_max + diff_[5], 126): k_min, k_max = max(0, k_min - diff_[4]), min(k_max + diff_[5], 126) # delta_i = i_max - i_min + diff # delta_j = j_max - j_min + diff # delta_k = k_max - k_min + diff # diff_value = -5 # i_min, i_max = max(0, i_min - diff_value), min(i_max + diff_value, 126) # j_min, j_max = max(0, j_min - diff_value), min(j_max + diff_value, 126) # k_min, k_max = max(0, k_min - diff_value), min(k_max + diff_value, 126) bb = torch.tensor([[i_min, j_min, k_min, i_max + 1, j_max + 1, k_max + 1]]) # print(i_min, i_max + 1, j_min, j_max + 1, k_min, k_max + 1) # check dynamic box # bb = torch.tensor([[i_min, j_min, k_min, delta_i, delta_j, delta_k]]) bbox_coords.append(bb) # print(torch.sum(volume), torch.sum(volume[i_min:i_max + 1, j_min:j_max + 1, k_min:k_max + 1])) bbox_coords = torch.stack(bbox_coords) return bbox_coords