import numpy as np import torch from typing import List from torch import Tensor from .utility import chance from .utility import grid_coordinates from .noise import perlin def resize( image : Tensor, scale_factor : float or List[float] = None, shape : List[int] = None, nearest : bool = False) -> Tensor: """ Resize an image with the option of scaling and/or setting to a new shape. Parameters: ----------- image: torch.Tensor An input tensor with shape (C, H, W[, D]) to resize. scale_factor: float or List[float], optional Multiplicative factor(s) for scaling the input tensor. If a float, then the same scale factor is applied to all spatial dimensions. If a tuple, then the scaling factor for each dimension should be provided. shape: List[int], optional Target shape of the output tensor. nearest: bool, optional If True, use nearest neighbor interpolation. Otherwise, use linear interpolation. Returns: -------- torch.Tensor: The resized tensor with the shape specified by `shape` or scaled by `scale_factor`. """ ndim = image.ndim - 1 # scale the image if the scale factor is provided if scale_factor is not None and scale_factor != 1: # compute target shape based on the scale factor target_shape = [int(s * scale_factor + 0.5) for s in image.shape[1:]] # convert image to float32 if it's not already to enable interpolation # if using nearest interpolation, save the original dtype to convert back later reset_type = None if not torch.is_floating_point(image): if nearest: reset_type = image.dtype image = image.type(torch.float32) # determine interpolation mode based on ndim and interpolation type linear = 'trilinear' if image.ndim - 1 == 3 else 'bilinear' mode = 'nearest' if nearest else linear # apply interpolation to the image if nearest: image = torch.nn.functional.interpolate(image.unsqueeze(0), target_shape, mode=mode) else: image = torch.nn.functional.interpolate(image.unsqueeze(0), target_shape, mode=mode) image = image.squeeze(0) # convert image back to its original dtype if necessary if reset_type is not None: image = image.type(reset_type) if shape is not None: # compute padding for each spatial dimension padding = [] baseshape = image.shape[1:] for d in range(ndim): diff = shape[d] - baseshape[d] if diff > 0: half = diff / 2 a, b = int(np.floor(half)), int(np.ceil(half)) padding.extend([a, b]) else: padding.extend([0, 0]) # apply padding to the image padding.reverse() image = torch.nn.functional.pad(image, padding) # compute slice to remove excess dimensions slicing = [slice(0, image.shape[0])] baseshape = image.shape[1:] for d in range(ndim): diff = baseshape[d] - shape[d] if diff > 0: half = diff / 2 a, b = int(np.floor(half)), int(np.ceil(half)) slicing.append(slice(a, baseshape[d] - b)) else: slicing.append(slice(0, baseshape[d])) # apply slice to remove excess dimensions image = image[tuple(slicing)] return image def random_flip(dim : int, *args, prob : float = 0.5): """ Randomly flips an image (or set of images) along the given dimension. Parameters ---------- dim : int The dimension along which to flip. Note that the first dimension is the channel dimension. *args : torch.Tensor The image(s) to flip. prob : float The probability of flipping the image(s). Returns ------- torch.Tensor or tuple[torch.Tensor] The flipped image(s). """ result = tuple([arg.flip([dim]) for arg in args]) if chance(prob) else args if len(args) == 1: return result[0] return result def compose_affine( ndim : int, translation : Tensor = None, rotation : Tensor = None, scale : Tensor = None, shear : Tensor = None, degrees : bool = True, device : torch.device = None) -> Tensor: """ Composes an affine matrix from a set of translation, rotation, scale, and shear transform components. Parameters ---------- ndim (int): The number of dimensions of the affine matrix. Must be 2 or 3. translation : Tensor, optional The translation vector. Must be a vector of size `ndim`. rotation : Tensor, optional The rotation angles. Must be a scalar value for 2D affine matrices, and a tensor of size 3 for 3D affine matrices. scale : Tensor, optional The scaling factor. Can be scalar or vector of size `ndim`. shear : Tensor, optional The shearing factor. Must be a scalar value for 2D affine matrices, and a tensor of size 3 for 3D affine matrices. degrees : bool, optional Whether to interpret the rotation angles as degrees. device : torch.device, optional The device of the returned matrix. Returns ------- Tensor The composed affine matrix, as a tensor of shape `(ndim + 1, ndim + 1)`. """ if ndim not in (2, 3): raise ValueError(f'affine transform must be 2D or 3D, got ndim {ndim}') # check translation translation = torch.zeros(ndim) if translation is None else torch.as_tensor(translation) if len(translation) != ndim: raise ValueError(f'translation must be of shape ({ndim},)') # check rotation angles expected = 3 if ndim == 3 else 1 rotation = torch.zeros(expected) if rotation is None else torch.as_tensor(rotation) if rotation.ndim == 0 and ndim == 3 or rotation.ndim != 0 and rotation.shape[0] != expected: raise ValueError(f'rotation must be of shape ({expected},)') # check scaling factor scale = torch.ones(ndim) if scale is None else torch.as_tensor(scale) if scale.ndim == 0: scale = scale.repeat(ndim) if scale.shape[0] != ndim: raise ValueError(f'scale must be of size {ndim}') # check shearing expected = 3 if ndim == 3 else 1 shear = torch.zeros(expected) if shear is None else torch.as_tensor(shear) if shear.ndim == 0: shear = shear.view(1) if shear.shape[0] != expected: raise ValueError(f'shear must be of shape ({expected},)') # start from translation T = torch.eye(ndim + 1, dtype=torch.float64) T[:ndim, -1] = translation # rotation matrix R = torch.eye(ndim + 1, dtype=torch.float64) R[:ndim, :ndim] = angles_to_rotation_matrix(rotation, degrees=degrees) # scaling Z = torch.diag(torch.cat([scale, torch.ones(1, dtype=torch.float64)])) # shear matrix S = torch.eye(ndim + 1, dtype=torch.float64) S[0][1] = shear[0] if ndim == 3: S[0][2] = shear[1] S[1][2] = shear[2] # compose component matrices matrix = T @ R @ Z @ S return torch.as_tensor(matrix, dtype=torch.float32, device=device) def angles_to_rotation_matrix( rotation : Tensor, degrees : bool = True) -> Tensor: """ Compute a rotation matrix from the given rotation angles. Parameters ---------- rotation : Tensor A tensor containing the rotation angles. If `degrees` is True, the angles are in degrees, otherwise they are in radians. degrees : bool, optional Whether to interpret the rotation angles as degrees. Returns ------- Tensor The computed `(ndim + 1, ndim + 1)` rotation matrix. """ if degrees: rotation = torch.deg2rad(rotation) # scalar value allowed for 2D transforms rotation = torch.as_tensor(rotation) if rotation.ndim == 0: rotation = rotation.view(1) num_angles = len(rotation) # build the matrix if num_angles == 1: c, s = torch.cos(rotation[0]), torch.sin(rotation[0]) matrix = torch.tensor([[c, -s], [s, c]], dtype=torch.float64) elif num_angles == 3: c, s = torch.cos(rotation[0]), torch.sin(rotation[0]) rx = torch.tensor([[1, 0, 0], [0, c, s], [0, -s, c]], dtype=torch.float64) c, s = torch.cos(rotation[1]), torch.sin(rotation[1]) ry = torch.tensor([[c, 0, s], [0, 1, 0], [-s, 0, c]], dtype=torch.float64) c, s = torch.cos(rotation[2]), torch.sin(rotation[2]) rz = torch.tensor([[c, s, 0], [-s, c, 0], [0, 0, 1]], dtype=torch.float64) matrix = rx @ ry @ rz else: raise ValueError(f'expected 1 (2D) or 3 (3D) rotation angles, got {num_angles}') return matrix.to(rotation.device) def random_affine( ndim: int, max_translation: float = 0, max_rotation: float = 0, max_scaling: float = 1, device: torch.device = None) -> Tensor: """ TODOC """ # translation_range = sorted([-max_translation, max_translation]) translation = np.random.uniform(*translation_range, size=ndim) # rotation_range = sorted([-max_rotation, max_rotation]) rotation = np.random.uniform(*rotation_range, size=(1 if ndim == 2 else 3)) # if max_scaling < 1: raise ValueError('max scaling to random affine cannot be less than 1, ' 'see function doc for more info') inv = np.random.choice([-1, 1], size=ndim) scale = np.random.uniform(1, max_scaling, size=ndim) ** inv # compose from random paramters aff = compose_affine( ndim=ndim, translation=translation, rotation=rotation, scale=scale, device=device) return aff def affine_to_displacement_field( affine : Tensor, meshgrid : Tensor, rotate_around_center : bool = True) -> Tensor: """ Convert an affine transformation matrix to a dense displacement field. Parameters ---------- affine : Tensor Affine transformation matrix. meshgrid : Tensor The meshgrid tensor of shape `(W, H[, D], N)`, where N is the spatial dimensionality. rotate_around_center : bool, optional If True, the rotation will be around the center of the image, otherwise around the origin. Returns ------- Tensor The generated displacement field of shape `meshgrid.shape[:-1]`. """ ndim = meshgrid.shape[-1] shape = meshgrid.shape[:-1] # if rotate_around_center is enabled, adjust the meshgrid so that the rotation # is around the center of the image instead of the origin grid = meshgrid.clone() if rotate_around_center else meshgrid if rotate_around_center: for d in range(ndim): grid[..., d] -= (shape[d] - 1) / 2 # convert the meshgrid to homogeneous coordinates by appending a column of ones coords = grid.view(-1, ndim) ones = torch.ones((coords.shape[-2], 1), device=meshgrid.device) coords = torch.cat([coords, ones], dim=-1) # apply the affine transformation to the coordinates to get the shift vector shift = (affine @ coords.T)[:ndim].T # reshape the shift vector to match the shape of the meshgrid and subtract # the original meshgrid to get the displacement field shift = shift.view(*shape, ndim) - grid return shift def integrate_displacement_field( disp : Tensor, steps : int, meshgrid : Tensor = None) -> Tensor: """ TODOC """ if meshgrid is None: meshgrid = grid_coordinates(disp.shape[:-1], device=disp.device) if steps == 0: return disp disp = disp / (2 ** steps) for _ in range(steps): disp += spatial_transform(disp.movedim(-1, 0), disp, meshgrid=meshgrid).movedim(0, -1) return disp def random_displacement_field( shape : List[int], smoothing : float = 10, magnitude : float = 10, integrations : int = 0, voxsize : float = 1, meshgrid : Tensor = None, device: torch.device = None) -> Tensor: """ TODOC """ smoothing = smoothing / voxsize magnitude = magnitude / voxsize ndim = len(shape) disp = [perlin(shape, smoothing, magnitude, device=device) for i in range(ndim)] disp = torch.stack(disp, dim=-1) if integrations > 0: disp = integrate_displacement_field(disp, integrations, meshgrid) return disp def displacement_field_to_coords(disp, meshgrid=None) -> Tensor: """ TODOC """ if meshgrid is None: meshgrid = grid_coordinates(disp.shape[:-1], device=disp.device) shape = disp.shape[:-1] ndim = disp.shape[-1] coords = (meshgrid + disp) for d in range(ndim): coords[..., d] *= 2 / (shape[d] - 1) coords[..., d] -= 1 coords = coords.flip(-1) return coords def coords_to_displacement_field(coords, meshgrid=None) -> Tensor: """ TODOC """ if meshgrid is None: meshgrid = grid_coordinates(coords.shape[:-1], device=coords.device) raise NotImplementedError('coords_to_displacement_field is not yet implemented. ' 'contact andrew if you get this... or implement it :)') def spatial_transform( image : Tensor, trf : Tensor, method : str = 'linear', isdisp : bool = True, meshgrid : Tensor = None, rotate_around_center : bool = True) -> Tensor: """ TODOC """ if trf is None: return image if trf.ndim == 2: if meshgrid is None: meshgrid = grid_coordinates(image.shape[1:], device=image.device) trf = torch.linalg.inv(trf) trf = affine_to_displacement_field(trf, meshgrid, rotate_around_center=rotate_around_center) isdisp = True # if isdisp: trf = displacement_field_to_coords(trf, meshgrid=meshgrid) # method = 'bilinear' if method == 'linear' else method # reset_type = None if not torch.is_floating_point(image): if method == 'nearest': reset_type = image.dtype image = image.type(torch.float32) # image = image.unsqueeze(0) trf = trf.unsqueeze(0) interped = torch.nn.functional.grid_sample(image, trf, align_corners=True, mode=method) interped = interped.squeeze(0) # if reset_type is not None: interped = interped.type(reset_type) return interped def random_transform( shape : List[int], affine_probability : float = 1.0, max_translation : float = 5.0, max_rotation : float = 5.0, max_scaling : float = 1.1, warp_probability : float = 1.0, warp_integrations : int = 5, warp_smoothing_range : List[int] = [10, 20], warp_magnitude_range : List[int] = [1, 2], voxsize : int = 1, device : torch.device = None, isdisp : bool = True, ) -> Tensor: """ TODOC """ ndim = len(shape) trf = None # generate a random affine if chance(affine_probability): # compute meshgrid meshgrid = grid_coordinates(shape, device=device) # scale max translation value so that it correctly corresponds to mm max_translation = max_translation / voxsize matrix = random_affine( ndim=ndim, max_translation=max_translation, max_rotation=max_rotation, max_scaling=max_scaling, device=device) trf = affine_to_displacement_field(matrix, meshgrid) # generate a nonlinear transform if chance(warp_probability): disp = random_displacement_field( shape=shape, smoothing=np.random.uniform(*warp_smoothing_range), magnitude=np.random.uniform(*warp_magnitude_range), integrations=warp_integrations, voxsize=voxsize, device=device) # merge with the affine transform if necessary if trf is None: trf = disp else: trf += spatial_transform(disp.movedim(-1, 0), trf, meshgrid=meshgrid).movedim(0, -1) # convert to coordinates if specified if trf is not None and not isdisp: trf = displacement_field_to_coords(trf) return trf