Commit
·
abb46b8
1
Parent(s):
b5281fa
Update README.md
Browse files
README.md
CHANGED
|
@@ -46,145 +46,28 @@ Git repository for software associated with the 2016 ACL paper "Identifying Caus
|
|
| 46 |
Disclaimer: The team releasing altlex did not upload the dataset to the Hub and did not write a dataset card.
|
| 47 |
These steps were done by the Hugging Face team.
|
| 48 |
|
| 49 |
-
### Supported Tasks
|
| 50 |
|
| 51 |
-
[
|
| 52 |
|
| 53 |
### Languages
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
## Dataset Structure
|
| 58 |
-
|
| 59 |
-
Parallel Wikipedia Format
|
| 60 |
-
|
| 61 |
-
This is a gzipped, JSON-formatted file. The "titles" array is the shared title name of the English and Simple Wikipedia articles.
|
| 62 |
-
The "articles" array consists of two arrays and each of those arrays must be the same length as the "titles" array and
|
| 63 |
-
the indices into these arrays must point to the aligned articles and titles.
|
| 64 |
-
Each article within the articles array is an array of tokenized sentence strings (but not word tokenized).
|
| 65 |
-
|
| 66 |
-
The format of the dictionary is as follows:
|
| 67 |
-
|
| 68 |
-
```
|
| 69 |
-
{"files": [english_name, simple_name],
|
| 70 |
-
"articles": [
|
| 71 |
-
[[article_1_sentence_1_string, article_1_sentence_2_string, ...],
|
| 72 |
-
[article_2_sentence_1_string, article_2_sentence_2_string, ...],
|
| 73 |
-
...
|
| 74 |
-
],
|
| 75 |
-
[[article_1_sentence_1_string, article_1_sentence_2_string, ...],
|
| 76 |
-
[article_2_sentence_1_string, article_2_sentence_2_string, ...],
|
| 77 |
-
...
|
| 78 |
-
]
|
| 79 |
-
],
|
| 80 |
-
"titles": [title_1_string, title_2_string, ...]
|
| 81 |
-
}
|
| 82 |
-
|
| 83 |
-
```
|
| 84 |
-
|
| 85 |
-
Parsed Wikipedia Format
|
| 86 |
-
|
| 87 |
-
This is a gzipped, JSON-formatted list of parsed Wikipedia article pairs.
|
| 88 |
-
The list stored at 'sentences' is of length 2 and stores each version
|
| 89 |
-
of the English and Wikipedia article with the same title.
|
| 90 |
-
|
| 91 |
-
The data is formatted as follows:
|
| 92 |
-
|
| 93 |
-
```
|
| 94 |
-
[
|
| 95 |
-
{
|
| 96 |
-
"index": article_index,
|
| 97 |
-
"title": article_title_string,
|
| 98 |
-
"sentences": [[parsed_sentence_1, parsed_sentence_2, ...],
|
| 99 |
-
[parsed_sentence_1, parsed_sentence_2, ...]
|
| 100 |
-
]
|
| 101 |
-
},
|
| 102 |
-
...
|
| 103 |
-
]
|
| 104 |
-
|
| 105 |
-
```
|
| 106 |
-
|
| 107 |
-
Parsed Pairs Format
|
| 108 |
|
| 109 |
-
|
| 110 |
-
even and odd indices. For the parsed sentence, see "Parsed Sentence Format."
|
| 111 |
|
| 112 |
-
|
| 113 |
|
| 114 |
```
|
| 115 |
-
[
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
...
|
| 120 |
-
]
|
| 121 |
-
|
| 122 |
-
```
|
| 123 |
-
|
| 124 |
-
Parsed Sentence Format
|
| 125 |
-
|
| 126 |
-
Each parsed sentence is of the following format:
|
| 127 |
-
|
| 128 |
-
```
|
| 129 |
-
{
|
| 130 |
-
"dep": [[[governor_index, dependent_index, relation_string], ...], ...],
|
| 131 |
-
"lemmas": [[lemma_1_string, lemma_2_string, ...], ...],
|
| 132 |
-
"pos": [[pos_1_string, pos_2_string, ...], ...],
|
| 133 |
-
"parse": [parenthesized_parse_1_string, ...],
|
| 134 |
-
"words": [[word_1_string, word_2_string, ...], ...] ,
|
| 135 |
-
"ner": [[ner_1_string, ner_2_string, ...], ...]
|
| 136 |
-
}
|
| 137 |
-
|
| 138 |
-
```
|
| 139 |
-
|
| 140 |
-
Feature Extractor Config Format
|
| 141 |
-
|
| 142 |
-
```
|
| 143 |
-
{"framenetSettings":
|
| 144 |
-
{"binary": true/false},
|
| 145 |
-
"featureSettings":
|
| 146 |
-
{
|
| 147 |
-
"arguments_cat_curr": true/false,
|
| 148 |
-
"arguments_verbnet_prev": true/false,
|
| 149 |
-
"head_word_cat_curr": true/false,
|
| 150 |
-
"head_word_verbnet_prev": true/false,
|
| 151 |
-
"head_word_verbnet_altlex": true/false,
|
| 152 |
-
"head_word_cat_prev": true/false,
|
| 153 |
-
"head_word_cat_altlex": true/false,
|
| 154 |
-
"kld_score": true/false,
|
| 155 |
-
"head_word_verbnet_curr": true/false,
|
| 156 |
-
"arguments_verbnet_curr": true/false,
|
| 157 |
-
"framenet": true/false,
|
| 158 |
-
"arguments_cat_prev": true/false,
|
| 159 |
-
"connective": true/false
|
| 160 |
-
},
|
| 161 |
-
"kldSettings":
|
| 162 |
-
{"kldDir": $kld_name}
|
| 163 |
-
}
|
| 164 |
-
|
| 165 |
```
|
| 166 |
|
| 167 |
-
|
| 168 |
|
| 169 |
-
It is also possible to run the feature extractor directly on a single data point.
|
| 170 |
-
From the featureExtraction module create a FeatureExtractor object and call the method addFeatures
|
| 171 |
-
on a DataPoint object (note that this does not create any interaction features,
|
| 172 |
-
for that you will also need to call makeInteractionFeatures).
|
| 173 |
-
The DataPoint class takes a dictionary as input, in the following format:
|
| 174 |
-
|
| 175 |
-
```
|
| 176 |
-
{
|
| 177 |
-
"sentences": {[{"ner": [...], "pos": [...], "words": [...], "stems": [...], "lemmas": [...], "dependencies": [...]}, {...}]}
|
| 178 |
-
"altlexLength": integer,
|
| 179 |
-
"altlex": {"dependencies": [...]}
|
| 180 |
-
}
|
| 181 |
-
The sentences list is the pair of sentences/spans where the first span begins with the altlex. Dependencies must be a list where at index i there is a dependency relation string and governor index integer or a NoneType. Index i into the words list is the dependent of this relation. To split single sentence dependency relations, use the function splitDependencies in utils.dependencyUtils.
|
| 182 |
|
| 183 |
-
```
|
| 184 |
-
|
| 185 |
-
### Curation Rationale
|
| 186 |
-
|
| 187 |
-
[More Information Needed](https://github.com/chridey/altlex)
|
| 188 |
|
| 189 |
### Source Data
|
| 190 |
|
|
@@ -238,6 +121,6 @@ The sentences list is the pair of sentences/spans where the first span begins wi
|
|
| 238 |
|
| 239 |
### Contributions
|
| 240 |
|
| 241 |
-
|
| 242 |
|
| 243 |
---
|
|
|
|
| 46 |
Disclaimer: The team releasing altlex did not upload the dataset to the Hub and did not write a dataset card.
|
| 47 |
These steps were done by the Hugging Face team.
|
| 48 |
|
| 49 |
+
### Supported Tasks
|
| 50 |
|
| 51 |
+
- [Sentence Transformers](https://huggingface.co/sentence-transformers) training.
|
| 52 |
|
| 53 |
### Languages
|
| 54 |
|
| 55 |
+
- English.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
## Dataset Structure: Equivalent sentence pairs.
|
|
|
|
| 58 |
|
| 59 |
+
Each example in the dataset contains a pair of equivalent sentences and is formated as a dictionary:
|
| 60 |
|
| 61 |
```
|
| 62 |
+
{"set": [sentence_1, sentence_2]}
|
| 63 |
+
{"set": [sentence_1, sentence_2]}
|
| 64 |
+
...
|
| 65 |
+
{"set": [sentence_1, sentence_2]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
```
|
| 67 |
|
| 68 |
+
This dataset is useful for training Sentence Transformers models. Refer to the following post on how to train models using similar pairs of sentences.
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
### Source Data
|
| 73 |
|
|
|
|
| 121 |
|
| 122 |
### Contributions
|
| 123 |
|
| 124 |
+
- [@chridey](https://github.com/chridey/altlex/commits?author=chridey) for adding this dataset to Github.
|
| 125 |
|
| 126 |
---
|