--- extra_gated_fields: First Name: text Last Name: text Date of birth: date_picker Country: country Affiliation: text Job title: type: select options: - Student - Research Graduate - AI researcher - AI developer/engineer - Reporter - Other geo: ip_location By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox extra_gated_description: >- The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). extra_gated_button_content: Submit language: - en pretty_name: SA-FARI configs: - config_name: SA-FARI data_files: - split: train path: annotation/sa_fari_train.json - split: test path: annotation/sa_fari_test.json license: other --- # SA-FARI Dataset **License** CC-BY-NC 4.0 **SA-FARI** is a wildlife camera dataset collected through a collaboration between Meta and [CXL](https://www.conservationxlabs.com/). All videos and pre-processed JPEGImages can be found in [cxl-public-camera-trap](https://console.cloud.google.com/storage/browser/cxl-public-camera-trap), which contains the following contents: ``` sa_fari/ ├── sa_fari_test_tars/ │ ├── JPEGImages_6fps/ │ ├── videos/ ├── sa_fari_test/ │ ├── JPEGImages_6fps/ │ ├── videos/ ├── sa_fari_train_tars/ │ ├── JPEGImages_6fps/ │ ├── videos/ └── sa_fari_train/ ├── JPEGImages_6fps/ └── videos/ ``` * `videos`: The original full fps videos. * `JPEGImages_6fps`: For annotation, the videos have been downsampled to 6fps. This folder contains the downsampled frames compatible with the annotation json files below. This Hugging Face dataset repo contains the annotations: ``` datasets/facebook/SA-FARI/tree/main/ └── annotation/ ├── sa_fari_test.json ├── sa_fari_test_ext.json ├── sa_fari_train.json └── sa_fari_train_ext.json ``` * `sa_fari_test.json` and `sa_fari_train.json` * Follow the same format as [SA-Co/VEval](https://huggingface.co/datasets/facebook/SACo-VEval/) * `sa_fari_test_ext.json` and `sa_fari_train_ext.json` * In additional to the [SA-Co/VEval] format, we added additional metadata to the following fields: * `videos`: * `video_num_frames`, `video_fps`, `video_creation_datetime` and `location_id` have been added as additional metadata to the `videos` field. * `categories`: * `Kingdom`, `Phylum`, `Class`, `Order`, `Family`, `Genus` and `Species` have been added when applicable as additional metadata to the `categories` field. All the SA-FARI annotation files are compatible to use the visualization notebook and offline evaluator developed in [SAM 3 Github](https://github.com/facebookresearch/sam3/tree/main/scripts/eval/veval). ## Annotation Format A format breakdown for `sa_fari_test.json` and `sa_fari_train.json`. The format is similar to the [YTVIS](https://youtube-vos.org/dataset/vis/) format. In the annotation json, e.g. `sa_fari_test.json` there are 5 fields: * info: * A dict containing the dataset info * E.g. {'version': 'v1', 'date': '2025-09-24', 'description': 'SA-FARI Test'} * videos * A list of videos that are used in the current annotation json * It contains {id, video_name, file_names, height, width, length} * annotations * A list of **positive** masklets and their related info * It contains {id, segmentations, bboxes, areas, iscrowd, video_id, height, width, category_id, noun_phrase} * video_id should match to the `videos - id` field above * category_id should match to the `categories - id` field below * segmentations is a list of [RLE](https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/mask.py) * categories * A **globally** used noun phrase id map, which is true across all 3 domains. * It contains {id, name} * name is the noun phrase * video_np_pairs * A list of video-np pairs, including both **positive** and **negative** used in the current annotation json * It contains {id, video_id, category_id, noun_phrase, num_masklets} * video_id should match the `videos - id` above * category_id should match the `categories - id` above * when `num_masklets > 0` it is a positive video-np pair, and the presenting masklets can be found in the annotations field * when `num_masklets = 0` it is a negative video-np pair, meaning no masklet presenting at all ``` data { "info": info "videos": [video] "annotations": [annotation] "categories": [category] "video_np_pairs": [video_np_pair] } video { "id": int "video_name": str # e.g. sav_000000 "file_names": List[str] "height": int "width": width "length": length } annotation { "id": int "segmentations": List[RLE] "bboxes": List[List[int, int, int, int]] "areas": List[int] "iscrowd": int "video_id": str "height": int "width": int "category_id": int "noun_phrase": str } category { "id": int "name": str } video_np_pair { "id": int "video_id": str "category_id": int "noun_phrase": str "num_masklets" int } ```