Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
collected_date: string
total_datasets: int64
total_size_bytes: int64
by_source: struct<github: struct<count: int64, size: int64, files: list<item: string>>, jsonplaceholder: struct<count: int64, size: int64, files: list<item: string>>, public_apis: struct<count: int64, size: int64, files: list<item: string>>, synthetic: struct<count: int64, size: int64, files: list<item: string>>>
collected: list<item: struct<source: string, name: string, size: int64, path: string>>
failed: list<item: struct<url: string, error: string>>
vs
sha: string
node_id: string
commit: struct<author: struct<date: string, email: string, name: string>, comment_count: int64, committer: struct<date: string, email: string, name: string>, message: string, tree: struct<sha: string, url: string>, url: string, verification: struct<payload: string, reason: string, signature: string, verified: bool, verified_at: string>>
url: string
html_url: string
comments_url: string
author: struct<avatar_url: string, events_url: string, followers_url: string, following_url: string, gists_url: string, gravatar_id: string, html_url: string, id: int64, login: string, node_id: string, organizations_url: string, received_events_url: string, repos_url: string, site_admin: bool, starred_url: string, subscriptions_url: string, type: string, url: string, user_view_type: string>
committer: struct<avatar_url: string, events_url: string, followers_url: string, following_url: string, gists_url: string, gravatar_id: string, html_url: string, id: int64, login: string, node_id: string, organizations_url: string, received_events_url: string, repos_url: string, site_admin: bool, starred_url: string, subscriptions_url: string, type: string, url: string, user_view_type: string>
parents: list<item: struct<html_url: string, sha: string, url: string>>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 547, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              collected_date: string
              total_datasets: int64
              total_size_bytes: int64
              by_source: struct<github: struct<count: int64, size: int64, files: list<item: string>>, jsonplaceholder: struct<count: int64, size: int64, files: list<item: string>>, public_apis: struct<count: int64, size: int64, files: list<item: string>>, synthetic: struct<count: int64, size: int64, files: list<item: string>>>
              collected: list<item: struct<source: string, name: string, size: int64, path: string>>
              failed: list<item: struct<url: string, error: string>>
              vs
              sha: string
              node_id: string
              commit: struct<author: struct<date: string, email: string, name: string>, comment_count: int64, committer: struct<date: string, email: string, name: string>, message: string, tree: struct<sha: string, url: string>, url: string, verification: struct<payload: string, reason: string, signature: string, verified: bool, verified_at: string>>
              url: string
              html_url: string
              comments_url: string
              author: struct<avatar_url: string, events_url: string, followers_url: string, following_url: string, gists_url: string, gravatar_id: string, html_url: string, id: int64, login: string, node_id: string, organizations_url: string, received_events_url: string, repos_url: string, site_admin: bool, starred_url: string, subscriptions_url: string, type: string, url: string, user_view_type: string>
              committer: struct<avatar_url: string, events_url: string, followers_url: string, following_url: string, gists_url: string, gravatar_id: string, html_url: string, id: int64, login: string, node_id: string, organizations_url: string, received_events_url: string, repos_url: string, site_admin: bool, starred_url: string, subscriptions_url: string, type: string, url: string, user_view_type: string>
              parents: list<item: struct<html_url: string, sha: string, url: string>>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

ZENO Benchmark Datasets

This directory contains diverse, real-world JSON datasets collected for benchmarking ZENO's compression performance against JSON and other formats.

Collection Summary

Last Updated: November 5, 2025 Total Datasets: 65 Total Size: 4.17 MB (4,373,804 bytes)

Dataset Categories

1. GitHub API (30 datasets, 1.24 MB)

Real GitHub API responses covering various endpoint types:

Repository Information (10 datasets):

  • Major OSS projects: Kubernetes, React, VS Code, TensorFlow, Rust, Python, Go, Node.js, Django, Vue.js
  • Contains: stars, forks, issues, language stats, license info, etc.
  • Size range: 6-7 KB per file

User Profiles (5 datasets):

  • Famous developers: Linus Torvalds, Guido van Rossum, DHH, Kyle Simpson, TJ Holowaychuk
  • Contains: follower counts, repos, bio, location, etc.
  • Size range: 1-1.5 KB per file

Issues (3 datasets):

  • Open issues from Rust, VS Code, React
  • 10 issues per dataset with full metadata
  • Size range: 54-70 KB per file

Pull Requests (2 datasets):

  • Active PRs from Kubernetes, TensorFlow
  • Includes commits, reviews, labels, assignees
  • Size range: 198-283 KB per file

Contributors (2 datasets):

  • Top 20 contributors from React, Node.js
  • Contains: contributions count, commit stats
  • Size: ~21 KB per file

Commits (2 datasets):

  • Recent 15 commits from Rust, Python
  • Full commit metadata with author, message, stats
  • Size: 77-78 KB per file

Releases (2 datasets):

  • Release history from Rust, Node.js
  • Includes: version tags, release notes, assets
  • Size: 107-217 KB per file

Organizations (4 datasets):

  • Microsoft, Google, Facebook, Apache
  • Org metadata: repos, members, location
  • Size: 1-1.3 KB per file

2. JSONPlaceholder (10 datasets, 235 KB)

Fake REST API data for testing:

  • posts (27 KB): 100 blog posts
  • comments (157 KB): 500 comments
  • albums (9 KB): 100 photo albums
  • photos (10 KB): 50 photo metadata
  • todos (24 KB): 200 todo items
  • users (5 KB): 10 user profiles
  • user_posts (2 KB): Posts by specific user
  • user_albums (1 KB): Albums by specific user
  • post_comments (1 KB): Comments on specific post
  • posts_single (292 bytes): Single post detail

3. Public APIs (10 datasets, 2.34 MB)

Data from various public REST APIs:

Geographic Data:

  • countries_usa (21 KB): USA country information
  • countries_region_europe (263 KB): All European countries
  • countries_language_spanish (122 KB): Spanish-speaking countries

Cryptocurrency Data:

  • crypto_coins_list (1.6 MB): Complete cryptocurrency list (15,000+ coins)
  • crypto_bitcoin (140 KB): Bitcoin detailed data
  • crypto_ethereum (140 KB): Ethereum detailed data
  • crypto_markets (47 KB): Top 50 crypto markets

Other APIs:

  • dog_breeds (4 KB): Dog breed catalog
  • breweries (25 KB): 50 brewery records
  • nested_posts_with_comments (10 KB): Posts with embedded comments

4. Synthetic Datasets (15 datasets, 463 KB)

Carefully crafted datasets representing common real-world patterns:

E-commerce & Business:

  • ecommerce_catalog (31 KB): 100 products with varied attributes
  • user_profiles (34 KB): 80 user accounts with preferences
  • npm_packages (40 KB): 60 package.json configurations

Logging & Events:

  • server_logs (48 KB): 200 structured log entries
  • event_stream (41 KB): 150 event records
  • api_responses (51 KB): 50 API response samples

Time-series & Sensor Data:

  • sensor_timeseries (32 KB): 150 sensor readings
  • geographic_data (12 KB): 60 city records with coordinates

Compression Test Cases:

  • numeric_sequences (1.9 KB): Linear, Fibonacci, powers, primes (delta compression test)
  • repeated_values (11 KB): High repetition data (sparse mode test)
  • wide_table (21 KB): 50 records × 20 fields (column mode test)
  • database_records_sparse (13 KB): Records with sparse fields

Complex Structures:

  • nested_structures (22 KB): Deeply nested objects
  • mixed_types (23 KB): All JSON types mixed
  • large_text_fields (86 KB): Articles with large text content

Size Distribution

Size Range Count Example
< 10 KB 28 User profiles, organizations, small configs
10-50 KB 24 Repository info, logs, synthetic data
50-100 KB 7 Issues, commits, large text fields
100-300 KB 7 Releases, crypto data, country lists
> 300 KB 1 Crypto coins list (1.6 MB)

Diversity Characteristics

The dataset collection includes:

  • Multiple domains: Development tools, social media, e-commerce, finance, geography
  • Various structures: Flat objects, nested hierarchies, arrays, mixed types
  • Different patterns:
    • Repetitive data (sparse mode candidates)
    • Numeric sequences (delta encoding candidates)
    • Wide tables (column mode candidates)
    • String-heavy content (dictionary candidates)
  • Size variety: 292 bytes to 1.6 MB
  • Real-world APIs: GitHub, CoinGecko, REST Countries, etc.
  • Representative synthetic data: Common use cases like logs, configs, time-series

File Structure

Each dataset consists of two files:

source/
  dataset_name.json           # The actual JSON data
  dataset_name.metadata.json  # Collection metadata

Metadata Format

{
  "id": "source_dataset_name",
  "source": "github|jsonplaceholder|public_apis|synthetic",
  "collected_date": "2025-11-05T22:51:39.293685",
  "size_bytes": 12345,
  "description": "Brief description of the dataset",
  "url": "Original URL if applicable"
}

Usage in Benchmarks

These datasets are used to:

  1. Measure compression ratios: ZENO vs JSON vs MessagePack vs Protobuf
  2. Test encoding modes: Verify column/row/sparse/delta selection
  3. Benchmark performance: Encoding/decoding speed across dataset types
  4. Validate correctness: Round-trip testing (JSON → ZENO → JSON)
  5. Token efficiency: Estimate LLM token reduction

Expanding the Dataset

To scale to 1000+ datasets:

  1. GitHub API: Expand to more repos, longer histories
  2. Package Registries: npm, PyPI, crates.io package metadata
  3. Social Media: Twitter/X, Reddit public APIs
  4. Open Data: Government datasets, scientific data
  5. Logs: Real production logs (anonymized)
  6. Configurations: Real-world config files from OSS projects
  7. Database Dumps: Sample SQL→JSON exports

License & Attribution

  • GitHub API data: Public API, subject to GitHub's terms
  • JSONPlaceholder: Fake data, free to use
  • Public APIs: Various licenses, check individual sources
  • Synthetic data: Generated for this project, no restrictions

All data is for benchmarking and research purposes only

Downloads last month
256