Datasets:
Tasks:
Text Retrieval
Sub-tasks:
fact-checking-retrieval
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
| # coding=utf-8 | |
| # Copyright 2020 HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| import json | |
| import datasets | |
| _DESCRIPTION = """\ | |
| HoVer is an open-domain, many-hop fact extraction and claim verification dataset built upon the Wikipedia corpus. The original 2-hop claims are adapted from question-answer pairs from HotpotQA. It is collected by a team of NLP researchers at UNC Chapel Hill and Verisk Analytics. | |
| """ | |
| _HOMEPAGE_URL = "https://hover-nlp.github.io/" | |
| _CITATION = """\ | |
| @inproceedings{jiang2020hover, | |
| title={{HoVer}: A Dataset for Many-Hop Fact Extraction And Claim Verification}, | |
| author={Yichen Jiang and Shikha Bordia and Zheng Zhong and Charles Dognin and Maneesh Singh and Mohit Bansal.}, | |
| booktitle={Findings of the Conference on Empirical Methods in Natural Language Processing ({EMNLP})}, | |
| year={2020} | |
| } | |
| """ | |
| _TRAIN_URL = "https://raw.githubusercontent.com/hover-nlp/hover/main/data/hover/hover_train_release_v1.1.json" | |
| _VALID_URL = "https://raw.githubusercontent.com/hover-nlp/hover/main/data/hover/hover_dev_release_v1.1.json" | |
| _TEST_URL = "https://raw.githubusercontent.com/hover-nlp/hover/main/data/hover/hover_test_release_v1.1.json" | |
| class Hover(datasets.GeneratorBasedBuilder): | |
| VERSION = datasets.Version("1.1.0") | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("int32"), | |
| "uid": datasets.Value("string"), | |
| "claim": datasets.Value("string"), | |
| "supporting_facts": [ | |
| { | |
| "key": datasets.Value("string"), | |
| "value": datasets.Value("int32"), | |
| } | |
| ], | |
| "label": datasets.ClassLabel(names=["NOT_SUPPORTED", "SUPPORTED"]), | |
| "num_hops": datasets.Value("int32"), | |
| "hpqa_id": datasets.Value("string"), | |
| }, | |
| ), | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE_URL, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| train_path = dl_manager.download_and_extract(_TRAIN_URL) | |
| valid_path = dl_manager.download_and_extract(_VALID_URL) | |
| test_path = dl_manager.download_and_extract(_TEST_URL) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"datapath": train_path, "datatype": "train"}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={"datapath": valid_path, "datatype": "valid"}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={"datapath": test_path, "datatype": "test"}, | |
| ), | |
| ] | |
| def _generate_examples(self, datapath, datatype): | |
| with open(datapath, encoding="utf-8") as f: | |
| data = json.load(f) | |
| for sentence_counter, d in enumerate(data): | |
| if datatype != "test": | |
| resp = { | |
| "id": sentence_counter, | |
| "uid": d["uid"], | |
| "claim": d["claim"], | |
| "supporting_facts": [{"key": x[0], "value": x[1]} for x in d["supporting_facts"]], | |
| "label": d["label"], | |
| "num_hops": d["num_hops"], | |
| "hpqa_id": d["hpqa_id"], | |
| } | |
| else: | |
| resp = { | |
| "id": sentence_counter, | |
| "uid": d["uid"], | |
| "claim": d["claim"], | |
| "supporting_facts": [], | |
| "label": -1, | |
| "num_hops": -1, | |
| "hpqa_id": "None", | |
| } | |
| yield sentence_counter, resp | |