| import dask.dataframe as dd | |
| import pandas as pd | |
| import sys | |
| import os | |
| import numpy as np | |
| from Bio.PDB import PDBList | |
| from Bio import SeqIO | |
| from rdkit import Chem | |
| import warnings | |
| def get_sequence(pdb_id): | |
| try: | |
| pdbfile = PDBList().retrieve_pdb_file(pdb_id.upper(),file_format='pdb',pdir='/tmp') | |
| seq = str(next(SeqIO.parse(pdbfile, "pdb-seqres")).seq) | |
| os.unlink(pdbfile) | |
| return seq | |
| except Exception as e: | |
| print(e) | |
| pass | |
| def make_canonical(smi): | |
| return Chem.MolToSmiles(Chem.MolFromSmiles(smi)) | |
| if __name__ == '__main__': | |
| import glob | |
| filenames = glob.glob(sys.argv[3]) | |
| seqs = [] | |
| smiles = [] | |
| active = [] | |
| targets = pd.read_csv(sys.argv[1],sep=' ',keep_default_na=False) | |
| for fn in filenames: | |
| df = pd.read_csv(fn,header=None,sep=' ') | |
| df[0] = df[0].apply(make_canonical) | |
| df[1] = df[1].apply(make_canonical) | |
| actives = df[0].unique() | |
| decoys = df[1].unique() | |
| smiles += actives.tolist()+decoys.tolist() | |
| active += [True]*len(actives) + [False]*len(decoys) | |
| split = os.path.basename(fn).split('-') | |
| target = split[2].upper() | |
| if len(split) > 5: | |
| target += '-'+split[3].upper() | |
| print(target) | |
| seq = get_sequence(targets[targets.name.str.upper()==target].pdb.values[0]) | |
| seqs += [seq]*(len(actives)+len(decoys)) | |
| ddf = dd.from_pandas(pd.DataFrame({'seq': seqs, 'smiles': smiles, 'active': active}),npartitions=1) | |
| ddf = ddf.repartition(partition_size='1M') | |
| ddf.to_parquet(sys.argv[2]) | |