fix skip download feature
Browse files- binding_affinity.py +9 -26
binding_affinity.py
CHANGED
|
@@ -34,7 +34,7 @@ year={2021}
|
|
| 34 |
# TODO: Add description of the dataset here
|
| 35 |
# You can copy an official description
|
| 36 |
_DESCRIPTION = """\
|
| 37 |
-
A dataset to
|
| 38 |
"""
|
| 39 |
|
| 40 |
# TODO: Add a link to an official homepage for the dataset here
|
|
@@ -47,9 +47,9 @@ _LICENSE = "BSD two-clause"
|
|
| 47 |
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
| 48 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 49 |
_URL = "https://huggingface.co/datasets/jglaser/binding_affinity/resolve/main/"
|
| 50 |
-
|
| 51 |
-
_file_names = {'default': '
|
| 52 |
-
'no_kras': '
|
| 53 |
|
| 54 |
_URLs = {name: _URL+_file_names[name] for name in _file_names}
|
| 55 |
|
|
@@ -60,23 +60,6 @@ class BindingAffinity(datasets.ArrowBasedBuilder):
|
|
| 60 |
|
| 61 |
VERSION = datasets.Version("1.1.0")
|
| 62 |
|
| 63 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
| 64 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 65 |
-
|
| 66 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
| 67 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
| 68 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
| 69 |
-
|
| 70 |
-
# You will be able to load one or the other configurations in the following list with
|
| 71 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 72 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 73 |
-
# BUILDER_CONFIGS = [
|
| 74 |
-
# datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
|
| 75 |
-
# datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
|
| 76 |
-
#]
|
| 77 |
-
|
| 78 |
-
#DEFAULT_CONFIG_NAME = "affinities" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 79 |
-
|
| 80 |
def _info(self):
|
| 81 |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
| 82 |
#if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
|
@@ -125,11 +108,12 @@ class BindingAffinity(datasets.ArrowBasedBuilder):
|
|
| 125 |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
| 126 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 127 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
| 130 |
files = dl_manager.download_and_extract(_URLs)
|
| 131 |
-
except:
|
| 132 |
-
pass
|
| 133 |
|
| 134 |
return [
|
| 135 |
datasets.SplitGenerator(
|
|
@@ -156,5 +140,4 @@ class BindingAffinity(datasets.ArrowBasedBuilder):
|
|
| 156 |
local = fs.LocalFileSystem()
|
| 157 |
|
| 158 |
for i, f in enumerate([filepath]):
|
| 159 |
-
print(f)
|
| 160 |
yield i, pq.read_table(f,filesystem=local)
|
|
|
|
| 34 |
# TODO: Add description of the dataset here
|
| 35 |
# You can copy an official description
|
| 36 |
_DESCRIPTION = """\
|
| 37 |
+
A dataset to fine-tune language models on protein-ligand binding affinity prediction.
|
| 38 |
"""
|
| 39 |
|
| 40 |
# TODO: Add a link to an official homepage for the dataset here
|
|
|
|
| 47 |
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
| 48 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 49 |
_URL = "https://huggingface.co/datasets/jglaser/binding_affinity/resolve/main/"
|
| 50 |
+
_data_dir = "data/"
|
| 51 |
+
_file_names = {'default': _data_dir+'all.parquet',
|
| 52 |
+
'no_kras': _data_dir+'all_nokras.parquet'}
|
| 53 |
|
| 54 |
_URLs = {name: _URL+_file_names[name] for name in _file_names}
|
| 55 |
|
|
|
|
| 60 |
|
| 61 |
VERSION = datasets.Version("1.1.0")
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
def _info(self):
|
| 64 |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
| 65 |
#if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
|
|
|
| 108 |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
| 109 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 110 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 111 |
+
import os
|
| 112 |
+
if os.path.exists(dl_manager._base_path):
|
| 113 |
+
# this is a hack to force the use of the local copy
|
| 114 |
+
files = dl_manager.download_and_extract({fn: os.path.join(dl_manager._base_path, _file_names[fn]) for fn in _file_names})
|
| 115 |
+
else:
|
| 116 |
files = dl_manager.download_and_extract(_URLs)
|
|
|
|
|
|
|
| 117 |
|
| 118 |
return [
|
| 119 |
datasets.SplitGenerator(
|
|
|
|
| 140 |
local = fs.LocalFileSystem()
|
| 141 |
|
| 142 |
for i, f in enumerate([filepath]):
|
|
|
|
| 143 |
yield i, pq.read_table(f,filesystem=local)
|