Datasets:
Add files using upload-large-folder tool
Browse files- .DS_Store +0 -0
- .gitignore +53 -0
- AGENT_INSTRUCTIONS.md +248 -0
- LICENSE +22 -0
- README.md +209 -3
- example.py +272 -0
- test/images/00247.png +3 -0
- test/images/00253.png +3 -0
- test/images/00521.png +3 -0
- test/images/00535.png +3 -0
- test/images/01159.png +3 -0
- test/images/01818.png +3 -0
- test/images/02322.png +3 -0
- test/images/02336.png +3 -0
- test/images/02444.png +3 -0
- test/images/02450.png +3 -0
- test/images/03028.png +3 -0
- test/images/03772.png +3 -0
- test/images/03969.png +3 -0
- test/images/03982.png +3 -0
- test/images/03996.png +3 -0
- test/images/04021.png +3 -0
- test/images/04035.png +3 -0
- test/images/04747.png +3 -0
- test/images/04753.png +3 -0
- test/images/04960.png +3 -0
- test/images/04974.png +3 -0
- test/images/05303.png +3 -0
- test/images/05459.png +3 -0
- test/images/06144.png +3 -0
- test/images/06150.png +3 -0
- test/images/06622.png +3 -0
- test/images/06636.png +3 -0
- test/images/06805.png +3 -0
- test/images/06811.png +3 -0
- test/images/07514.png +3 -0
- test/images/07528.png +3 -0
- test/images/08169.png +3 -0
- test/images/08182.png +3 -0
- test/images/08196.png +3 -0
- test/images/08627.png +3 -0
- test/images/08828.png +3 -0
- test/images/09263.png +3 -0
- test/images/09277.png +3 -0
- test/images/09288.png +3 -0
- test/images/09505.png +3 -0
- test/images/09511.png +3 -0
- test/metadata.csv +0 -0
- train/.DS_Store +0 -0
- train/metadata.csv +0 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
.gitignore
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
build/
|
| 8 |
+
develop-eggs/
|
| 9 |
+
dist/
|
| 10 |
+
downloads/
|
| 11 |
+
eggs/
|
| 12 |
+
.eggs/
|
| 13 |
+
lib/
|
| 14 |
+
lib64/
|
| 15 |
+
parts/
|
| 16 |
+
sdist/
|
| 17 |
+
var/
|
| 18 |
+
wheels/
|
| 19 |
+
*.egg-info/
|
| 20 |
+
.installed.cfg
|
| 21 |
+
*.egg
|
| 22 |
+
|
| 23 |
+
# Virtual environments
|
| 24 |
+
.env
|
| 25 |
+
.venv
|
| 26 |
+
env/
|
| 27 |
+
venv/
|
| 28 |
+
ENV/
|
| 29 |
+
|
| 30 |
+
# IDE
|
| 31 |
+
.idea/
|
| 32 |
+
.vscode/
|
| 33 |
+
*.swp
|
| 34 |
+
*.swo
|
| 35 |
+
*~
|
| 36 |
+
|
| 37 |
+
# Jupyter Notebook
|
| 38 |
+
.ipynb_checkpoints
|
| 39 |
+
|
| 40 |
+
# Generated files
|
| 41 |
+
samples_visualization.png
|
| 42 |
+
shape_types.png
|
| 43 |
+
color_distribution.png
|
| 44 |
+
|
| 45 |
+
# OS
|
| 46 |
+
.DS_Store
|
| 47 |
+
Thumbs.db
|
| 48 |
+
|
| 49 |
+
# Logs
|
| 50 |
+
*.log
|
| 51 |
+
|
| 52 |
+
# Agent instructions (internal use only)
|
| 53 |
+
AGENT_INSTRUCTIONS.md
|
AGENT_INSTRUCTIONS.md
ADDED
|
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Shape Polygons Dataset - コード書き換え指示書
|
| 2 |
+
|
| 3 |
+
このドキュメントは、既存のコードをShape Polygons Datasetを使用するように書き換えるための指示書です。
|
| 4 |
+
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
## データセット概要
|
| 8 |
+
|
| 9 |
+
| 項目 | 内容 |
|
| 10 |
+
|------|------|
|
| 11 |
+
| 名前 | Shape Polygons Dataset |
|
| 12 |
+
| 総画像数 | 70,000枚(train: 60,000 / test: 10,000) |
|
| 13 |
+
| 画像形式 | PNG |
|
| 14 |
+
| 画像サイズ | 小さい正方形画像(黒背景に色付きポリゴン) |
|
| 15 |
+
| クラス数 | 6(3〜8角形) |
|
| 16 |
+
| メタデータ | CSV形式 |
|
| 17 |
+
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
## ディレクトリ構造
|
| 21 |
+
|
| 22 |
+
```
|
| 23 |
+
shape-polygons-dataset/
|
| 24 |
+
├── train/
|
| 25 |
+
│ ├── images/
|
| 26 |
+
│ │ ├── 00001.png
|
| 27 |
+
│ │ ├── 00002.png
|
| 28 |
+
│ │ └── ... (60,000 images)
|
| 29 |
+
│ └── metadata.csv
|
| 30 |
+
├── test/
|
| 31 |
+
│ ├── images/
|
| 32 |
+
│ │ ├── 00001.png
|
| 33 |
+
│ │ └── ... (10,000 images)
|
| 34 |
+
│ └── metadata.csv
|
| 35 |
+
└── example.py
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
---
|
| 39 |
+
|
| 40 |
+
## メタデータ (metadata.csv) のカラム
|
| 41 |
+
|
| 42 |
+
| カラム名 | 型 | 説明 | 範囲 |
|
| 43 |
+
|----------|------|------|------|
|
| 44 |
+
| `filename` | string | 画像ファイル名 | "00001.png" 形式 |
|
| 45 |
+
| `size` | float | ポリゴンの相対サイズ | 0.0 〜 1.0 |
|
| 46 |
+
| `angle` | float | 回転角度(度) | 0.0 〜 360.0 |
|
| 47 |
+
| `vertices` | int | **頂点数(クラスラベル)** | 3, 4, 5, 6, 7, 8 |
|
| 48 |
+
| `center_x` | float | 中心X座標(正規化) | 0.0 〜 1.0 |
|
| 49 |
+
| `center_y` | float | 中心Y座標(正規化) | 0.0 〜 1.0 |
|
| 50 |
+
| `color_r` | float | 赤色成分 | 0.0 〜 1.0 |
|
| 51 |
+
| `color_g` | float | 緑色成分 | 0.0 〜 1.0 |
|
| 52 |
+
| `color_b` | float | 青色成分 | 0.0 〜 1.0 |
|
| 53 |
+
|
| 54 |
+
---
|
| 55 |
+
|
| 56 |
+
## タスク別の使い方
|
| 57 |
+
|
| 58 |
+
### 1. 画像分類(Classification)
|
| 59 |
+
|
| 60 |
+
**目的**: 画像から頂点数(3〜8)を予測する
|
| 61 |
+
|
| 62 |
+
```python
|
| 63 |
+
# クラスラベルの変換
|
| 64 |
+
# vertices: 3, 4, 5, 6, 7, 8 → label: 0, 1, 2, 3, 4, 5
|
| 65 |
+
label = row["vertices"] - 3
|
| 66 |
+
|
| 67 |
+
# クラス数
|
| 68 |
+
num_classes = 6
|
| 69 |
+
|
| 70 |
+
# クラス名
|
| 71 |
+
class_names = ["Triangle", "Quadrilateral", "Pentagon", "Hexagon", "Heptagon", "Octagon"]
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
### 2. 回帰(Regression)
|
| 75 |
+
|
| 76 |
+
**目的**: サイズ、角度、位置などの連続値を予測
|
| 77 |
+
|
| 78 |
+
```python
|
| 79 |
+
# 単一値回帰
|
| 80 |
+
target = row["size"] # または row["angle"]
|
| 81 |
+
|
| 82 |
+
# 複数値回帰
|
| 83 |
+
target = [row["center_x"], row["center_y"]]
|
| 84 |
+
|
| 85 |
+
# 色の回帰
|
| 86 |
+
target = [row["color_r"], row["color_g"], row["color_b"]]
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
### 3. マルチタスク学習
|
| 90 |
+
|
| 91 |
+
```python
|
| 92 |
+
targets = {
|
| 93 |
+
"vertices": row["vertices"] - 3, # 分類
|
| 94 |
+
"size": row["size"], # 回帰
|
| 95 |
+
"angle": row["angle"], # 回帰
|
| 96 |
+
"center": [row["center_x"], row["center_y"]], # 回帰
|
| 97 |
+
"color": [row["color_r"], row["color_g"], row["color_b"]] # 回帰
|
| 98 |
+
}
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
---
|
| 102 |
+
|
| 103 |
+
## コード書き換えパターン
|
| 104 |
+
|
| 105 |
+
### パターン A: 既存のImageFolderベースのコードを変換
|
| 106 |
+
|
| 107 |
+
**変換前(ImageFolder):**
|
| 108 |
+
```python
|
| 109 |
+
from torchvision.datasets import ImageFolder
|
| 110 |
+
dataset = ImageFolder("data/train", transform=transform)
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
**変換後:**
|
| 114 |
+
```python
|
| 115 |
+
import pandas as pd
|
| 116 |
+
from torch.utils.data import Dataset
|
| 117 |
+
from PIL import Image
|
| 118 |
+
import os
|
| 119 |
+
|
| 120 |
+
class ShapePolygonsDataset(Dataset):
|
| 121 |
+
def __init__(self, root_dir, split="train", transform=None):
|
| 122 |
+
self.root_dir = root_dir
|
| 123 |
+
self.split = split
|
| 124 |
+
self.transform = transform
|
| 125 |
+
self.metadata = pd.read_csv(os.path.join(root_dir, split, "metadata.csv"))
|
| 126 |
+
|
| 127 |
+
def __len__(self):
|
| 128 |
+
return len(self.metadata)
|
| 129 |
+
|
| 130 |
+
def __getitem__(self, idx):
|
| 131 |
+
row = self.metadata.iloc[idx]
|
| 132 |
+
img_path = os.path.join(self.root_dir, self.split, "images", row["filename"])
|
| 133 |
+
image = Image.open(img_path).convert("RGB")
|
| 134 |
+
|
| 135 |
+
if self.transform:
|
| 136 |
+
image = self.transform(image)
|
| 137 |
+
|
| 138 |
+
label = row["vertices"] - 3 # 0-5 for 3-8 vertices
|
| 139 |
+
return image, label
|
| 140 |
+
|
| 141 |
+
dataset = ShapePolygonsDataset("path/to/dataset", split="train", transform=transform)
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
### パターン B: Hugging Face Datasetsを使用
|
| 145 |
+
|
| 146 |
+
```python
|
| 147 |
+
from datasets import load_dataset
|
| 148 |
+
|
| 149 |
+
# Hugging Face Hubからロード
|
| 150 |
+
dataset = load_dataset("kimura-koya/shape-polygons-dataset")
|
| 151 |
+
|
| 152 |
+
# ローカルからロード(ImageFolder形式として)
|
| 153 |
+
dataset = load_dataset("imagefolder", data_dir="path/to/dataset")
|
| 154 |
+
|
| 155 |
+
# アクセス
|
| 156 |
+
train_data = dataset["train"]
|
| 157 |
+
test_data = dataset["test"]
|
| 158 |
+
```
|
| 159 |
+
|
| 160 |
+
### パターン C: シンプルなPandas + PILでのロード
|
| 161 |
+
|
| 162 |
+
```python
|
| 163 |
+
import pandas as pd
|
| 164 |
+
from PIL import Image
|
| 165 |
+
import os
|
| 166 |
+
|
| 167 |
+
# メタデータ読み込み
|
| 168 |
+
train_df = pd.read_csv("train/metadata.csv")
|
| 169 |
+
test_df = pd.read_csv("test/metadata.csv")
|
| 170 |
+
|
| 171 |
+
# 画像読み込み関数
|
| 172 |
+
def load_image(split, filename):
|
| 173 |
+
return Image.open(os.path.join(split, "images", filename))
|
| 174 |
+
|
| 175 |
+
# 使用例
|
| 176 |
+
for idx, row in train_df.iterrows():
|
| 177 |
+
img = load_image("train", row["filename"])
|
| 178 |
+
label = row["vertices"]
|
| 179 |
+
# 処理...
|
| 180 |
+
```
|
| 181 |
+
|
| 182 |
+
---
|
| 183 |
+
|
| 184 |
+
## よくある変換パターン
|
| 185 |
+
|
| 186 |
+
### MNIST/CIFAR → Shape Polygons
|
| 187 |
+
|
| 188 |
+
| MNIST/CIFAR | Shape Polygons |
|
| 189 |
+
|-------------|----------------|
|
| 190 |
+
| `torchvision.datasets.MNIST(...)` | `ShapePolygonsDataset(root, split="train")` |
|
| 191 |
+
| `dataset.classes` | `["Triangle", "Quadrilateral", "Pentagon", "Hexagon", "Heptagon", "Octagon"]` |
|
| 192 |
+
| `len(dataset.classes)` = 10 | `num_classes = 6` |
|
| 193 |
+
| グレースケール/RGB | RGB(黒背景にカラーポリゴン) |
|
| 194 |
+
|
| 195 |
+
### 設定変更のチェックリスト
|
| 196 |
+
|
| 197 |
+
書き換え時に確認すべき項目:
|
| 198 |
+
|
| 199 |
+
- [ ] `num_classes` を 6 に変更
|
| 200 |
+
- [ ] データセットのパスを変更
|
| 201 |
+
- [ ] 画像の前処理(Normalize等)を確認
|
| 202 |
+
- [ ] train/test/validation の分割方法を確認
|
| 203 |
+
- [ ] クラス名のリストを更新
|
| 204 |
+
- [ ] 評価指標が分類タスクに適切か確認
|
| 205 |
+
|
| 206 |
+
---
|
| 207 |
+
|
| 208 |
+
## データセット統計
|
| 209 |
+
|
| 210 |
+
参考情報として、各クラスの分布:
|
| 211 |
+
|
| 212 |
+
```
|
| 213 |
+
Train Set (60,000 images):
|
| 214 |
+
3 vertices (Triangle): 約10,000枚
|
| 215 |
+
4 vertices (Quadrilateral): 約10,000枚
|
| 216 |
+
5 vertices (Pentagon): 約10,000枚
|
| 217 |
+
6 vertices (Hexagon): 約10,000枚
|
| 218 |
+
7 vertices (Heptagon): 約10,000枚
|
| 219 |
+
8 vertices (Octagon): 約10,000枚
|
| 220 |
+
```
|
| 221 |
+
|
| 222 |
+
※ ほぼ均等に分布
|
| 223 |
+
|
| 224 |
+
---
|
| 225 |
+
|
| 226 |
+
## 注意事項
|
| 227 |
+
|
| 228 |
+
1. **画像サイズ**: 小さい画像なので、大きなモデルではリサイズが必要な場合あり
|
| 229 |
+
2. **背景**: 黒背景(RGB: 0, 0, 0)にカラーポリゴン
|
| 230 |
+
3. **合成データ**: すべてプログラムで生成された合成データ
|
| 231 |
+
4. **ファイル名**: 5桁のゼロパディング(00001.png 〜 60000.png)
|
| 232 |
+
|
| 233 |
+
---
|
| 234 |
+
|
| 235 |
+
## サンプルコード(そのまま使用可能)
|
| 236 |
+
|
| 237 |
+
`example.py` に以下の機能があります:
|
| 238 |
+
|
| 239 |
+
- `ShapePolygonsDataset` クラス(PyTorch Dataset)
|
| 240 |
+
- `load_dataset()` 関数(Pandas DataFrame返却)
|
| 241 |
+
- `load_image()` 関数(PIL Image返却)
|
| 242 |
+
- 可視化関数各種
|
| 243 |
+
|
| 244 |
+
```python
|
| 245 |
+
# example.py をインポートして使用
|
| 246 |
+
from example import ShapePolygonsDataset, load_dataset, load_image
|
| 247 |
+
```
|
| 248 |
+
|
LICENSE
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2024
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
| 22 |
+
|
README.md
CHANGED
|
@@ -1,3 +1,209 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
task_categories:
|
| 4 |
+
- image-classification
|
| 5 |
+
- object-detection
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
tags:
|
| 9 |
+
- computer-vision
|
| 10 |
+
- polygons
|
| 11 |
+
- shapes
|
| 12 |
+
- synthetic-data
|
| 13 |
+
- image-generation
|
| 14 |
+
pretty_name: Shape Polygons Dataset
|
| 15 |
+
size_categories:
|
| 16 |
+
- 10K<n<100K
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# Shape Polygons Dataset
|
| 20 |
+
|
| 21 |
+
A synthetic dataset containing 70,000 images of various colored polygons (triangles to octagons) rendered on black backgrounds.
|
| 22 |
+
|
| 23 |
+
## Dataset Description
|
| 24 |
+
|
| 25 |
+
This dataset consists of programmatically generated polygon images with full metadata about each shape's properties. It's designed for tasks such as:
|
| 26 |
+
|
| 27 |
+
- **Shape Classification**: Classify polygons by number of vertices (3-8)
|
| 28 |
+
- **Regression Tasks**: Predict shape properties (size, angle, position, color)
|
| 29 |
+
- **Object Detection**: Locate and identify shapes within images
|
| 30 |
+
- **Generative Models**: Train models to generate geometric shapes
|
| 31 |
+
|
| 32 |
+
### Dataset Statistics
|
| 33 |
+
|
| 34 |
+
| Split | Number of Images |
|
| 35 |
+
|-------|------------------|
|
| 36 |
+
| Train | 60,000 |
|
| 37 |
+
| Test | 10,000 |
|
| 38 |
+
| **Total** | **70,000** |
|
| 39 |
+
|
| 40 |
+
### Shape Types
|
| 41 |
+
|
| 42 |
+
The dataset includes 6 different polygon types:
|
| 43 |
+
- **Triangle** (3 vertices)
|
| 44 |
+
- **Quadrilateral** (4 vertices)
|
| 45 |
+
- **Pentagon** (5 vertices)
|
| 46 |
+
- **Hexagon** (6 vertices)
|
| 47 |
+
- **Heptagon** (7 vertices)
|
| 48 |
+
- **Octagon** (8 vertices)
|
| 49 |
+
|
| 50 |
+
## Dataset Structure
|
| 51 |
+
|
| 52 |
+
```
|
| 53 |
+
shape-polygons-dataset/
|
| 54 |
+
├── train/
|
| 55 |
+
│ ├── images/
|
| 56 |
+
│ │ ├── 00001.png
|
| 57 |
+
│ │ ├── 00002.png
|
| 58 |
+
│ │ └── ... (60,000 images)
|
| 59 |
+
│ └── metadata.csv
|
| 60 |
+
├── test/
|
| 61 |
+
│ ├── images/
|
| 62 |
+
│ │ ├── 00001.png
|
| 63 |
+
│ │ ├── 00002.png
|
| 64 |
+
│ │ └── ... (10,000 images)
|
| 65 |
+
│ └── metadata.csv
|
| 66 |
+
└── README.md
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
### Metadata Fields
|
| 70 |
+
|
| 71 |
+
Each `metadata.csv` contains the following columns:
|
| 72 |
+
|
| 73 |
+
| Column | Type | Description |
|
| 74 |
+
|--------|------|-------------|
|
| 75 |
+
| `filename` | string | Image filename (e.g., "00001.png") |
|
| 76 |
+
| `size` | float | Relative size of the polygon (0.0 - 1.0) |
|
| 77 |
+
| `angle` | float | Rotation angle in degrees (0.0 - 360.0) |
|
| 78 |
+
| `vertices` | int | Number of vertices (3-8) |
|
| 79 |
+
| `center_x` | float | X-coordinate of center (0.0 - 1.0, normalized) |
|
| 80 |
+
| `center_y` | float | Y-coordinate of center (0.0 - 1.0, normalized) |
|
| 81 |
+
| `color_r` | float | Red color component (0.0 - 1.0) |
|
| 82 |
+
| `color_g` | float | Green color component (0.0 - 1.0) |
|
| 83 |
+
| `color_b` | float | Blue color component (0.0 - 1.0) |
|
| 84 |
+
|
| 85 |
+
## Sample Images
|
| 86 |
+
|
| 87 |
+
Here are some example images from the dataset:
|
| 88 |
+
|
| 89 |
+
<div style="display: flex; gap: 10px; flex-wrap: wrap;">
|
| 90 |
+
<img src="train/images/00001.png" width="64" height="64" alt="Sample 1">
|
| 91 |
+
<img src="train/images/00003.png" width="64" height="64" alt="Sample 2">
|
| 92 |
+
<img src="train/images/00005.png" width="64" height="64" alt="Sample 3">
|
| 93 |
+
<img src="train/images/00016.png" width="64" height="64" alt="Sample 4">
|
| 94 |
+
</div>
|
| 95 |
+
|
| 96 |
+
## Usage
|
| 97 |
+
|
| 98 |
+
### Loading with Hugging Face Datasets
|
| 99 |
+
|
| 100 |
+
```python
|
| 101 |
+
from datasets import load_dataset
|
| 102 |
+
|
| 103 |
+
# Load the dataset
|
| 104 |
+
dataset = load_dataset("your-username/shape-polygons-dataset")
|
| 105 |
+
|
| 106 |
+
# Access train and test splits
|
| 107 |
+
train_data = dataset["train"]
|
| 108 |
+
test_data = dataset["test"]
|
| 109 |
+
|
| 110 |
+
# Get a sample
|
| 111 |
+
sample = train_data[0]
|
| 112 |
+
print(f"Vertices: {sample['vertices']}, Size: {sample['size']:.2f}")
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
### Loading with Pandas
|
| 116 |
+
|
| 117 |
+
```python
|
| 118 |
+
import pandas as pd
|
| 119 |
+
from PIL import Image
|
| 120 |
+
import os
|
| 121 |
+
|
| 122 |
+
# Load metadata
|
| 123 |
+
train_metadata = pd.read_csv("train/metadata.csv")
|
| 124 |
+
test_metadata = pd.read_csv("test/metadata.csv")
|
| 125 |
+
|
| 126 |
+
# Load an image
|
| 127 |
+
img_path = os.path.join("train/images", train_metadata.iloc[0]["filename"])
|
| 128 |
+
image = Image.open(img_path)
|
| 129 |
+
image.show()
|
| 130 |
+
|
| 131 |
+
# Filter by number of vertices (e.g., triangles only)
|
| 132 |
+
triangles = train_metadata[train_metadata["vertices"] == 3]
|
| 133 |
+
print(f"Number of triangles: {len(triangles)}")
|
| 134 |
+
```
|
| 135 |
+
|
| 136 |
+
### PyTorch DataLoader Example
|
| 137 |
+
|
| 138 |
+
```python
|
| 139 |
+
import torch
|
| 140 |
+
from torch.utils.data import Dataset, DataLoader
|
| 141 |
+
from PIL import Image
|
| 142 |
+
import pandas as pd
|
| 143 |
+
import os
|
| 144 |
+
|
| 145 |
+
class PolygonDataset(Dataset):
|
| 146 |
+
def __init__(self, root_dir, split="train", transform=None):
|
| 147 |
+
self.root_dir = root_dir
|
| 148 |
+
self.split = split
|
| 149 |
+
self.transform = transform
|
| 150 |
+
self.metadata = pd.read_csv(os.path.join(root_dir, split, "metadata.csv"))
|
| 151 |
+
|
| 152 |
+
def __len__(self):
|
| 153 |
+
return len(self.metadata)
|
| 154 |
+
|
| 155 |
+
def __getitem__(self, idx):
|
| 156 |
+
row = self.metadata.iloc[idx]
|
| 157 |
+
img_path = os.path.join(self.root_dir, self.split, "images", row["filename"])
|
| 158 |
+
image = Image.open(img_path).convert("RGB")
|
| 159 |
+
|
| 160 |
+
if self.transform:
|
| 161 |
+
image = self.transform(image)
|
| 162 |
+
|
| 163 |
+
# Number of vertices as classification label (0-5 for 3-8 vertices)
|
| 164 |
+
label = row["vertices"] - 3
|
| 165 |
+
|
| 166 |
+
return image, label
|
| 167 |
+
|
| 168 |
+
# Create dataset and dataloader
|
| 169 |
+
dataset = PolygonDataset("path/to/dataset", split="train")
|
| 170 |
+
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
|
| 171 |
+
```
|
| 172 |
+
|
| 173 |
+
## Use Cases
|
| 174 |
+
|
| 175 |
+
1. **Beginner-Friendly ML Projects**: Simple dataset for learning image classification
|
| 176 |
+
2. **Shape Recognition Systems**: Training models to identify geometric shapes
|
| 177 |
+
3. **Property Regression**: Predicting continuous values (size, angle, position)
|
| 178 |
+
4. **Multi-Task Learning**: Combining classification and regression objectives
|
| 179 |
+
5. **Data Augmentation Research**: Studying effects of synthetic data on model performance
|
| 180 |
+
6. **Benchmark Dataset**: Evaluating new architectures on a controlled, balanced dataset
|
| 181 |
+
|
| 182 |
+
## License
|
| 183 |
+
|
| 184 |
+
This dataset is released under the [MIT License](LICENSE).
|
| 185 |
+
|
| 186 |
+
## Citation
|
| 187 |
+
|
| 188 |
+
If you use this dataset in your research, please cite it as:
|
| 189 |
+
|
| 190 |
+
```bibtex
|
| 191 |
+
@dataset{shape_polygons_dataset,
|
| 192 |
+
title={Shape Polygons Dataset},
|
| 193 |
+
year={2024},
|
| 194 |
+
url={https://huggingface.co/datasets/your-username/shape-polygons-dataset},
|
| 195 |
+
note={A synthetic dataset of 70,000 polygon images for computer vision tasks}
|
| 196 |
+
}
|
| 197 |
+
```
|
| 198 |
+
|
| 199 |
+
## Contributing
|
| 200 |
+
|
| 201 |
+
Contributions are welcome! Feel free to:
|
| 202 |
+
- Report issues
|
| 203 |
+
- Suggest improvements
|
| 204 |
+
- Submit pull requests
|
| 205 |
+
|
| 206 |
+
## Contact
|
| 207 |
+
|
| 208 |
+
For questions or feedback, please open an issue on the repository.
|
| 209 |
+
|
example.py
ADDED
|
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Shape Polygons Dataset - Usage Examples
|
| 3 |
+
|
| 4 |
+
This script demonstrates various ways to load and use the Shape Polygons Dataset.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
from PIL import Image
|
| 11 |
+
|
| 12 |
+
# =============================================================================
|
| 13 |
+
# Basic Usage: Loading Metadata and Images
|
| 14 |
+
# =============================================================================
|
| 15 |
+
|
| 16 |
+
def load_dataset(data_dir=".", split="train"):
|
| 17 |
+
"""Load metadata and return as pandas DataFrame."""
|
| 18 |
+
metadata_path = os.path.join(data_dir, split, "metadata.csv")
|
| 19 |
+
return pd.read_csv(metadata_path)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def load_image(data_dir, split, filename):
|
| 23 |
+
"""Load a single image from the dataset."""
|
| 24 |
+
img_path = os.path.join(data_dir, split, "images", filename)
|
| 25 |
+
return Image.open(img_path)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# =============================================================================
|
| 29 |
+
# Example 1: Explore Dataset Statistics
|
| 30 |
+
# =============================================================================
|
| 31 |
+
|
| 32 |
+
def explore_statistics(data_dir="."):
|
| 33 |
+
"""Print dataset statistics."""
|
| 34 |
+
print("=" * 50)
|
| 35 |
+
print("Shape Polygons Dataset Statistics")
|
| 36 |
+
print("=" * 50)
|
| 37 |
+
|
| 38 |
+
for split in ["train", "test"]:
|
| 39 |
+
df = load_dataset(data_dir, split)
|
| 40 |
+
print(f"\n{split.upper()} Split:")
|
| 41 |
+
print(f" Total images: {len(df)}")
|
| 42 |
+
print(f"\n Vertices distribution:")
|
| 43 |
+
for v in range(3, 9):
|
| 44 |
+
count = len(df[df["vertices"] == v])
|
| 45 |
+
print(f" {v} vertices: {count} ({count/len(df)*100:.1f}%)")
|
| 46 |
+
|
| 47 |
+
print(f"\n Size statistics:")
|
| 48 |
+
print(f" Min: {df['size'].min():.4f}")
|
| 49 |
+
print(f" Max: {df['size'].max():.4f}")
|
| 50 |
+
print(f" Mean: {df['size'].mean():.4f}")
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# =============================================================================
|
| 54 |
+
# Example 2: Visualize Sample Images
|
| 55 |
+
# =============================================================================
|
| 56 |
+
|
| 57 |
+
def visualize_samples(data_dir=".", n_samples=12, split="train"):
|
| 58 |
+
"""Visualize random samples from the dataset."""
|
| 59 |
+
df = load_dataset(data_dir, split)
|
| 60 |
+
samples = df.sample(n=min(n_samples, len(df)))
|
| 61 |
+
|
| 62 |
+
n_cols = 4
|
| 63 |
+
n_rows = (len(samples) + n_cols - 1) // n_cols
|
| 64 |
+
|
| 65 |
+
fig, axes = plt.subplots(n_rows, n_cols, figsize=(12, 3 * n_rows))
|
| 66 |
+
axes = axes.flatten() if n_samples > 1 else [axes]
|
| 67 |
+
|
| 68 |
+
for idx, (_, row) in enumerate(samples.iterrows()):
|
| 69 |
+
img = load_image(data_dir, split, row["filename"])
|
| 70 |
+
axes[idx].imshow(img)
|
| 71 |
+
axes[idx].set_title(f"{row['vertices']} vertices\nsize={row['size']:.2f}")
|
| 72 |
+
axes[idx].axis("off")
|
| 73 |
+
|
| 74 |
+
# Hide empty subplots
|
| 75 |
+
for idx in range(len(samples), len(axes)):
|
| 76 |
+
axes[idx].axis("off")
|
| 77 |
+
|
| 78 |
+
plt.tight_layout()
|
| 79 |
+
plt.savefig("samples_visualization.png", dpi=150, bbox_inches="tight")
|
| 80 |
+
print(f"Saved visualization to 'samples_visualization.png'")
|
| 81 |
+
plt.show()
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
# =============================================================================
|
| 85 |
+
# Example 3: Visualize by Shape Type
|
| 86 |
+
# =============================================================================
|
| 87 |
+
|
| 88 |
+
def visualize_by_shape_type(data_dir=".", split="train"):
|
| 89 |
+
"""Show one example of each shape type."""
|
| 90 |
+
df = load_dataset(data_dir, split)
|
| 91 |
+
shape_names = {
|
| 92 |
+
3: "Triangle",
|
| 93 |
+
4: "Quadrilateral",
|
| 94 |
+
5: "Pentagon",
|
| 95 |
+
6: "Hexagon",
|
| 96 |
+
7: "Heptagon",
|
| 97 |
+
8: "Octagon"
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
fig, axes = plt.subplots(2, 3, figsize=(12, 8))
|
| 101 |
+
axes = axes.flatten()
|
| 102 |
+
|
| 103 |
+
for idx, vertices in enumerate(range(3, 9)):
|
| 104 |
+
sample = df[df["vertices"] == vertices].iloc[0]
|
| 105 |
+
img = load_image(data_dir, split, sample["filename"])
|
| 106 |
+
axes[idx].imshow(img)
|
| 107 |
+
axes[idx].set_title(f"{shape_names[vertices]}\n({vertices} vertices)")
|
| 108 |
+
axes[idx].axis("off")
|
| 109 |
+
|
| 110 |
+
plt.suptitle("Shape Types in Dataset", fontsize=14, fontweight="bold")
|
| 111 |
+
plt.tight_layout()
|
| 112 |
+
plt.savefig("shape_types.png", dpi=150, bbox_inches="tight")
|
| 113 |
+
print(f"Saved visualization to 'shape_types.png'")
|
| 114 |
+
plt.show()
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
# =============================================================================
|
| 118 |
+
# Example 4: PyTorch Dataset Class
|
| 119 |
+
# =============================================================================
|
| 120 |
+
|
| 121 |
+
# Optional imports for PyTorch functionality
|
| 122 |
+
try:
|
| 123 |
+
import torch
|
| 124 |
+
from torch.utils.data import Dataset, DataLoader
|
| 125 |
+
from torchvision import transforms
|
| 126 |
+
PYTORCH_AVAILABLE = True
|
| 127 |
+
except ImportError:
|
| 128 |
+
PYTORCH_AVAILABLE = False
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class ShapePolygonsDataset:
|
| 132 |
+
"""PyTorch Dataset for Shape Polygons.
|
| 133 |
+
|
| 134 |
+
Requires: torch, torchvision
|
| 135 |
+
"""
|
| 136 |
+
|
| 137 |
+
def __init__(self, root_dir, split="train", transform=None, task="classification"):
|
| 138 |
+
"""
|
| 139 |
+
Args:
|
| 140 |
+
root_dir: Root directory of the dataset
|
| 141 |
+
split: "train" or "test"
|
| 142 |
+
transform: Optional torchvision transforms
|
| 143 |
+
task: "classification" for vertex count, "regression" for size prediction, "multi" for all properties
|
| 144 |
+
"""
|
| 145 |
+
if not PYTORCH_AVAILABLE:
|
| 146 |
+
raise ImportError("PyTorch is required. Install with: pip install torch torchvision")
|
| 147 |
+
|
| 148 |
+
self.root_dir = root_dir
|
| 149 |
+
self.split = split
|
| 150 |
+
self.transform = transform
|
| 151 |
+
self.task = task
|
| 152 |
+
self.metadata = pd.read_csv(os.path.join(root_dir, split, "metadata.csv"))
|
| 153 |
+
|
| 154 |
+
if self.transform is None:
|
| 155 |
+
self.transform = transforms.Compose([
|
| 156 |
+
transforms.ToTensor(),
|
| 157 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 158 |
+
])
|
| 159 |
+
|
| 160 |
+
def __len__(self):
|
| 161 |
+
return len(self.metadata)
|
| 162 |
+
|
| 163 |
+
def __getitem__(self, idx):
|
| 164 |
+
row = self.metadata.iloc[idx]
|
| 165 |
+
img_path = os.path.join(self.root_dir, self.split, "images", row["filename"])
|
| 166 |
+
image = Image.open(img_path).convert("RGB")
|
| 167 |
+
|
| 168 |
+
if self.transform:
|
| 169 |
+
image = self.transform(image)
|
| 170 |
+
|
| 171 |
+
if self.task == "classification":
|
| 172 |
+
# Class label: 0-5 for 3-8 vertices
|
| 173 |
+
label = torch.tensor(row["vertices"] - 3, dtype=torch.long)
|
| 174 |
+
elif self.task == "regression":
|
| 175 |
+
# Predict size
|
| 176 |
+
label = torch.tensor(row["size"], dtype=torch.float32)
|
| 177 |
+
elif self.task == "multi":
|
| 178 |
+
# Multi-task: return all properties
|
| 179 |
+
label = {
|
| 180 |
+
"vertices": torch.tensor(row["vertices"] - 3, dtype=torch.long),
|
| 181 |
+
"size": torch.tensor(row["size"], dtype=torch.float32),
|
| 182 |
+
"angle": torch.tensor(row["angle"], dtype=torch.float32),
|
| 183 |
+
"center": torch.tensor([row["center_x"], row["center_y"]], dtype=torch.float32),
|
| 184 |
+
"color": torch.tensor([row["color_r"], row["color_g"], row["color_b"]], dtype=torch.float32)
|
| 185 |
+
}
|
| 186 |
+
else:
|
| 187 |
+
raise ValueError(f"Unknown task: {self.task}")
|
| 188 |
+
|
| 189 |
+
return image, label
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def demo_pytorch_dataloader(data_dir="."):
|
| 193 |
+
"""Demonstrate PyTorch DataLoader usage."""
|
| 194 |
+
if not PYTORCH_AVAILABLE:
|
| 195 |
+
print("PyTorch is not installed. Install with: pip install torch torchvision")
|
| 196 |
+
return
|
| 197 |
+
|
| 198 |
+
print("Creating PyTorch Dataset and DataLoader...")
|
| 199 |
+
dataset = ShapePolygonsDataset(data_dir, split="train", task="classification")
|
| 200 |
+
dataloader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=0)
|
| 201 |
+
|
| 202 |
+
# Get one batch
|
| 203 |
+
images, labels = next(iter(dataloader))
|
| 204 |
+
print(f"Batch shape: {images.shape}")
|
| 205 |
+
print(f"Labels shape: {labels.shape}")
|
| 206 |
+
print(f"Label values (vertices - 3): {labels[:10].tolist()}")
|
| 207 |
+
print(f"Actual vertex counts: {[l + 3 for l in labels[:10].tolist()]}")
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
# =============================================================================
|
| 211 |
+
# Example 5: Color Analysis
|
| 212 |
+
# =============================================================================
|
| 213 |
+
|
| 214 |
+
def analyze_colors(data_dir=".", split="train"):
|
| 215 |
+
"""Analyze color distribution in the dataset."""
|
| 216 |
+
df = load_dataset(data_dir, split)
|
| 217 |
+
|
| 218 |
+
fig, axes = plt.subplots(1, 3, figsize=(15, 4))
|
| 219 |
+
colors = ["red", "green", "blue"]
|
| 220 |
+
columns = ["color_r", "color_g", "color_b"]
|
| 221 |
+
|
| 222 |
+
for idx, (color, col) in enumerate(zip(colors, columns)):
|
| 223 |
+
axes[idx].hist(df[col], bins=50, color=color, alpha=0.7, edgecolor="black")
|
| 224 |
+
axes[idx].set_xlabel(f"{color.capitalize()} Value")
|
| 225 |
+
axes[idx].set_ylabel("Frequency")
|
| 226 |
+
axes[idx].set_title(f"{color.capitalize()} Channel Distribution")
|
| 227 |
+
|
| 228 |
+
plt.suptitle(f"Color Distribution in {split.capitalize()} Set", fontsize=14, fontweight="bold")
|
| 229 |
+
plt.tight_layout()
|
| 230 |
+
plt.savefig("color_distribution.png", dpi=150, bbox_inches="tight")
|
| 231 |
+
print(f"Saved visualization to 'color_distribution.png'")
|
| 232 |
+
plt.show()
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
# =============================================================================
|
| 236 |
+
# Main
|
| 237 |
+
# =============================================================================
|
| 238 |
+
|
| 239 |
+
if __name__ == "__main__":
|
| 240 |
+
import argparse
|
| 241 |
+
|
| 242 |
+
parser = argparse.ArgumentParser(description="Shape Polygons Dataset Examples")
|
| 243 |
+
parser.add_argument("--data-dir", type=str, default=".", help="Path to dataset root")
|
| 244 |
+
parser.add_argument(
|
| 245 |
+
"--example",
|
| 246 |
+
type=str,
|
| 247 |
+
choices=["stats", "samples", "shapes", "pytorch", "colors", "all"],
|
| 248 |
+
default="all",
|
| 249 |
+
help="Which example to run"
|
| 250 |
+
)
|
| 251 |
+
args = parser.parse_args()
|
| 252 |
+
|
| 253 |
+
examples = {
|
| 254 |
+
"stats": ("Dataset Statistics", lambda: explore_statistics(args.data_dir)),
|
| 255 |
+
"samples": ("Sample Visualization", lambda: visualize_samples(args.data_dir)),
|
| 256 |
+
"shapes": ("Shape Types", lambda: visualize_by_shape_type(args.data_dir)),
|
| 257 |
+
"pytorch": ("PyTorch DataLoader Demo", lambda: demo_pytorch_dataloader(args.data_dir)),
|
| 258 |
+
"colors": ("Color Analysis", lambda: analyze_colors(args.data_dir)),
|
| 259 |
+
}
|
| 260 |
+
|
| 261 |
+
if args.example == "all":
|
| 262 |
+
for name, (desc, func) in examples.items():
|
| 263 |
+
print(f"\n{'=' * 50}")
|
| 264 |
+
print(f"Example: {desc}")
|
| 265 |
+
print("=" * 50)
|
| 266 |
+
func()
|
| 267 |
+
else:
|
| 268 |
+
name = args.example
|
| 269 |
+
desc, func = examples[name]
|
| 270 |
+
print(f"Running Example: {desc}")
|
| 271 |
+
func()
|
| 272 |
+
|
test/images/00247.png
ADDED
|
Git LFS Details
|
test/images/00253.png
ADDED
|
Git LFS Details
|
test/images/00521.png
ADDED
|
Git LFS Details
|
test/images/00535.png
ADDED
|
Git LFS Details
|
test/images/01159.png
ADDED
|
Git LFS Details
|
test/images/01818.png
ADDED
|
Git LFS Details
|
test/images/02322.png
ADDED
|
Git LFS Details
|
test/images/02336.png
ADDED
|
Git LFS Details
|
test/images/02444.png
ADDED
|
Git LFS Details
|
test/images/02450.png
ADDED
|
Git LFS Details
|
test/images/03028.png
ADDED
|
Git LFS Details
|
test/images/03772.png
ADDED
|
Git LFS Details
|
test/images/03969.png
ADDED
|
Git LFS Details
|
test/images/03982.png
ADDED
|
Git LFS Details
|
test/images/03996.png
ADDED
|
Git LFS Details
|
test/images/04021.png
ADDED
|
Git LFS Details
|
test/images/04035.png
ADDED
|
Git LFS Details
|
test/images/04747.png
ADDED
|
Git LFS Details
|
test/images/04753.png
ADDED
|
Git LFS Details
|
test/images/04960.png
ADDED
|
Git LFS Details
|
test/images/04974.png
ADDED
|
Git LFS Details
|
test/images/05303.png
ADDED
|
Git LFS Details
|
test/images/05459.png
ADDED
|
Git LFS Details
|
test/images/06144.png
ADDED
|
Git LFS Details
|
test/images/06150.png
ADDED
|
Git LFS Details
|
test/images/06622.png
ADDED
|
Git LFS Details
|
test/images/06636.png
ADDED
|
Git LFS Details
|
test/images/06805.png
ADDED
|
Git LFS Details
|
test/images/06811.png
ADDED
|
Git LFS Details
|
test/images/07514.png
ADDED
|
Git LFS Details
|
test/images/07528.png
ADDED
|
Git LFS Details
|
test/images/08169.png
ADDED
|
Git LFS Details
|
test/images/08182.png
ADDED
|
Git LFS Details
|
test/images/08196.png
ADDED
|
Git LFS Details
|
test/images/08627.png
ADDED
|
Git LFS Details
|
test/images/08828.png
ADDED
|
Git LFS Details
|
test/images/09263.png
ADDED
|
Git LFS Details
|
test/images/09277.png
ADDED
|
Git LFS Details
|
test/images/09288.png
ADDED
|
Git LFS Details
|
test/images/09505.png
ADDED
|
Git LFS Details
|
test/images/09511.png
ADDED
|
Git LFS Details
|
test/metadata.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
train/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
train/metadata.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|