""" Shape Polygons Dataset - Usage Examples This script demonstrates various ways to load and use the Shape Polygons Dataset. """ import os import pandas as pd import matplotlib.pyplot as plt from PIL import Image # ============================================================================= # Basic Usage: Loading Metadata and Images # ============================================================================= def load_dataset(data_dir=".", split="train"): """Load metadata and return as pandas DataFrame.""" metadata_path = os.path.join(data_dir, split, "metadata.csv") return pd.read_csv(metadata_path) def load_image(data_dir, split, filename): """Load a single image from the dataset.""" img_path = os.path.join(data_dir, split, "images", filename) return Image.open(img_path) # ============================================================================= # Example 1: Explore Dataset Statistics # ============================================================================= def explore_statistics(data_dir="."): """Print dataset statistics.""" print("=" * 50) print("Shape Polygons Dataset Statistics") print("=" * 50) for split in ["train", "test"]: df = load_dataset(data_dir, split) print(f"\n{split.upper()} Split:") print(f" Total images: {len(df)}") print(f"\n Vertices distribution:") for v in range(3, 9): count = len(df[df["vertices"] == v]) print(f" {v} vertices: {count} ({count/len(df)*100:.1f}%)") print(f"\n Size statistics:") print(f" Min: {df['size'].min():.4f}") print(f" Max: {df['size'].max():.4f}") print(f" Mean: {df['size'].mean():.4f}") # ============================================================================= # Example 2: Visualize Sample Images # ============================================================================= def visualize_samples(data_dir=".", n_samples=12, split="train"): """Visualize random samples from the dataset.""" df = load_dataset(data_dir, split) samples = df.sample(n=min(n_samples, len(df))) n_cols = 4 n_rows = (len(samples) + n_cols - 1) // n_cols fig, axes = plt.subplots(n_rows, n_cols, figsize=(12, 3 * n_rows)) axes = axes.flatten() if n_samples > 1 else [axes] for idx, (_, row) in enumerate(samples.iterrows()): img = load_image(data_dir, split, row["filename"]) axes[idx].imshow(img) axes[idx].set_title(f"{row['vertices']} vertices\nsize={row['size']:.2f}") axes[idx].axis("off") # Hide empty subplots for idx in range(len(samples), len(axes)): axes[idx].axis("off") plt.tight_layout() plt.savefig("samples_visualization.png", dpi=150, bbox_inches="tight") print(f"Saved visualization to 'samples_visualization.png'") plt.show() # ============================================================================= # Example 3: Visualize by Shape Type # ============================================================================= def visualize_by_shape_type(data_dir=".", split="train"): """Show one example of each shape type.""" df = load_dataset(data_dir, split) shape_names = { 3: "Triangle", 4: "Quadrilateral", 5: "Pentagon", 6: "Hexagon", 7: "Heptagon", 8: "Octagon" } fig, axes = plt.subplots(2, 3, figsize=(12, 8)) axes = axes.flatten() for idx, vertices in enumerate(range(3, 9)): sample = df[df["vertices"] == vertices].iloc[0] img = load_image(data_dir, split, sample["filename"]) axes[idx].imshow(img) axes[idx].set_title(f"{shape_names[vertices]}\n({vertices} vertices)") axes[idx].axis("off") plt.suptitle("Shape Types in Dataset", fontsize=14, fontweight="bold") plt.tight_layout() plt.savefig("shape_types.png", dpi=150, bbox_inches="tight") print(f"Saved visualization to 'shape_types.png'") plt.show() # ============================================================================= # Example 4: PyTorch Dataset Class # ============================================================================= # Optional imports for PyTorch functionality try: import torch from torch.utils.data import Dataset, DataLoader from torchvision import transforms PYTORCH_AVAILABLE = True except ImportError: PYTORCH_AVAILABLE = False class ShapePolygonsDataset: """PyTorch Dataset for Shape Polygons. Requires: torch, torchvision """ def __init__(self, root_dir, split="train", transform=None, task="classification"): """ Args: root_dir: Root directory of the dataset split: "train" or "test" transform: Optional torchvision transforms task: "classification" for vertex count, "regression" for size prediction, "multi" for all properties """ if not PYTORCH_AVAILABLE: raise ImportError("PyTorch is required. Install with: pip install torch torchvision") self.root_dir = root_dir self.split = split self.transform = transform self.task = task self.metadata = pd.read_csv(os.path.join(root_dir, split, "metadata.csv")) if self.transform is None: self.transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) def __len__(self): return len(self.metadata) def __getitem__(self, idx): row = self.metadata.iloc[idx] img_path = os.path.join(self.root_dir, self.split, "images", row["filename"]) image = Image.open(img_path).convert("RGB") if self.transform: image = self.transform(image) if self.task == "classification": # Class label: 0-5 for 3-8 vertices label = torch.tensor(row["vertices"] - 3, dtype=torch.long) elif self.task == "regression": # Predict size label = torch.tensor(row["size"], dtype=torch.float32) elif self.task == "multi": # Multi-task: return all properties label = { "vertices": torch.tensor(row["vertices"] - 3, dtype=torch.long), "size": torch.tensor(row["size"], dtype=torch.float32), "angle": torch.tensor(row["angle"], dtype=torch.float32), "center": torch.tensor([row["center_x"], row["center_y"]], dtype=torch.float32), "color": torch.tensor([row["color_r"], row["color_g"], row["color_b"]], dtype=torch.float32) } else: raise ValueError(f"Unknown task: {self.task}") return image, label def demo_pytorch_dataloader(data_dir="."): """Demonstrate PyTorch DataLoader usage.""" if not PYTORCH_AVAILABLE: print("PyTorch is not installed. Install with: pip install torch torchvision") return print("Creating PyTorch Dataset and DataLoader...") dataset = ShapePolygonsDataset(data_dir, split="train", task="classification") dataloader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=0) # Get one batch images, labels = next(iter(dataloader)) print(f"Batch shape: {images.shape}") print(f"Labels shape: {labels.shape}") print(f"Label values (vertices - 3): {labels[:10].tolist()}") print(f"Actual vertex counts: {[l + 3 for l in labels[:10].tolist()]}") # ============================================================================= # Example 5: Color Analysis # ============================================================================= def analyze_colors(data_dir=".", split="train"): """Analyze color distribution in the dataset.""" df = load_dataset(data_dir, split) fig, axes = plt.subplots(1, 3, figsize=(15, 4)) colors = ["red", "green", "blue"] columns = ["color_r", "color_g", "color_b"] for idx, (color, col) in enumerate(zip(colors, columns)): axes[idx].hist(df[col], bins=50, color=color, alpha=0.7, edgecolor="black") axes[idx].set_xlabel(f"{color.capitalize()} Value") axes[idx].set_ylabel("Frequency") axes[idx].set_title(f"{color.capitalize()} Channel Distribution") plt.suptitle(f"Color Distribution in {split.capitalize()} Set", fontsize=14, fontweight="bold") plt.tight_layout() plt.savefig("color_distribution.png", dpi=150, bbox_inches="tight") print(f"Saved visualization to 'color_distribution.png'") plt.show() # ============================================================================= # Main # ============================================================================= if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Shape Polygons Dataset Examples") parser.add_argument("--data-dir", type=str, default=".", help="Path to dataset root") parser.add_argument( "--example", type=str, choices=["stats", "samples", "shapes", "pytorch", "colors", "all"], default="all", help="Which example to run" ) args = parser.parse_args() examples = { "stats": ("Dataset Statistics", lambda: explore_statistics(args.data_dir)), "samples": ("Sample Visualization", lambda: visualize_samples(args.data_dir)), "shapes": ("Shape Types", lambda: visualize_by_shape_type(args.data_dir)), "pytorch": ("PyTorch DataLoader Demo", lambda: demo_pytorch_dataloader(args.data_dir)), "colors": ("Color Analysis", lambda: analyze_colors(args.data_dir)), } if args.example == "all": for name, (desc, func) in examples.items(): print(f"\n{'=' * 50}") print(f"Example: {desc}") print("=" * 50) func() else: name = args.example desc, func = examples[name] print(f"Running Example: {desc}") func()