Dataset Viewer
Auto-converted to Parquet Duplicate
run_id
string
service_name
string
timestamp
string
timestamp_unix_nano
string
co2_emissions_gco2e
float64
power_cost_usd
float64
gpu_utilization_percent
float64
gpu_memory_used_mib
float64
gpu_memory_total_mib
float64
gpu_temperature_celsius
float64
gpu_power_watts
float64
gen_ai_server_requests_running
float64
gen_ai_server_requests_waiting
float64
gen_ai_server_requests_max
float64
job_4acee6f5
smoltrace-eval
2025-12-06T04:11:25.943546
1764994285943546093
0
0
0
0
0
0
0
0
0
0
job_4acee6f5
smoltrace-eval
2025-12-06T04:11:35.943877
1764994295943876512
0
0
0
0
0
0
0
0
0
0
job_4acee6f5
smoltrace-eval
2025-12-06T04:11:45.944223
1764994305944222686
0
0
0
0
0
0
0
0
0
0
job_4acee6f5
smoltrace-eval
2025-12-06T04:11:55.944536
1764994315944535812
0
0
0
0
0
0
0
0
0
0
job_4acee6f5
smoltrace-eval
2025-12-06T04:12:05.944850
1764994325944849624
0
0
0
0
0
0
0
0
0
0
job_4acee6f5
smoltrace-eval
2025-12-06T04:12:15.945168
1764994335945168004
0
0
0
0
0
0
0
0
0
0
job_4acee6f5
smoltrace-eval
2025-12-06T04:12:25.945482
1764994345945482302
0
0
0
0
0
0
0
0
0
0
job_4acee6f5
smoltrace-eval
2025-12-06T04:12:35.945789
1764994355945789088
0
0
0
0
0
0
0
0
0
0
job_4acee6f5
smoltrace-eval
2025-12-06T04:12:45.946101
1764994365946101512
0
0
0
0
0
0
0
0
0
0
job_4acee6f5
smoltrace-eval
2025-12-06T04:12:55.946983
1764994375946983342
0
0
0
0
0
0
0
0
0
0
job_4acee6f5
smoltrace-eval
2025-12-06T04:13:05.947286
1764994385947285879
0
0
0
0
0
0
0
0
0
0
job_4acee6f5
smoltrace-eval
2025-12-06T04:13:15.947587
1764994395947587280
0
0
0
0
0
0
0
0
0
0
job_4acee6f5
smoltrace-eval
2025-12-06T04:13:25.947905
1764994405947904805
0
0
0
0
0
0
0
0
0
0
job_4acee6f5
smoltrace-eval
2025-12-06T04:13:35.948220
1764994415948220524
0
0
0
0
0
0
0
0
0
0
job_4acee6f5
smoltrace-eval
2025-12-06T04:13:43.366359
1764994423366358763
0
0
0
0
0
0
0
0
0
0
SMOLTRACE Logo

Tiny Agents. Total Visibility.

GitHub PyPI Documentation


SMOLTRACE GPU & Environmental Metrics

This dataset contains time-series GPU metrics and environmental impact data from a SMOLTRACE benchmark run.

Dataset Information

Field Value
Model openai/gpt-oss-120b
Run ID job_4acee6f5
Total Samples 15
Generated 2025-12-06 04:13:51 UTC
GPU Metrics Available

Schema

Column Type Description
run_id string Unique run identifier
timestamp string ISO timestamp of measurement
timestamp_unix_nano string Unix nanosecond timestamp
service_name string Service identifier
gpu_id string GPU device ID
gpu_name string GPU model name
gpu_utilization_percent float GPU compute utilization (0-100%)
gpu_memory_used_mib float GPU memory used (MiB)
gpu_memory_total_mib float Total GPU memory (MiB)
gpu_temperature_celsius float GPU temperature (°C)
gpu_power_watts float GPU power consumption (W)
co2_emissions_gco2e float Cumulative CO2 emissions (gCO2e)
power_cost_usd float Cumulative power cost (USD)

Environmental Impact

SMOLTRACE tracks environmental metrics to help you understand the carbon footprint of your AI workloads:

  • CO2 Emissions: Calculated based on GPU power consumption and regional carbon intensity
  • Power Cost: Estimated electricity cost based on configurable rates

Usage

from datasets import load_dataset
import pandas as pd

# Load metrics
ds = load_dataset("YOUR_USERNAME/smoltrace-metrics-TIMESTAMP")

# Convert to DataFrame for analysis
df = pd.DataFrame(ds['train'])

# Plot GPU utilization over time
import matplotlib.pyplot as plt
plt.plot(df['timestamp'], df['gpu_utilization_percent'])
plt.xlabel('Time')
plt.ylabel('GPU Utilization (%)')
plt.title('GPU Utilization During Evaluation')
plt.show()

# Get total environmental impact
total_co2 = df['co2_emissions_gco2e'].max()
total_cost = df['power_cost_usd'].max()
print(f"Total CO2: {total_co2:.4f} gCO2e")
print(f"Total Cost: ${total_cost:.6f}")

Related Datasets

This evaluation run also generated:

  • Results Dataset: Pass/fail outcomes for each test case
  • Traces Dataset: Detailed OpenTelemetry execution traces
  • Leaderboard: Aggregated metrics for model comparison

About SMOLTRACE

SMOLTRACE is a comprehensive benchmarking and evaluation framework for Smolagents - HuggingFace's lightweight agent library.

Key Features

  • Automated agent evaluation with customizable test cases
  • OpenTelemetry-based tracing for detailed execution insights
  • GPU metrics collection (utilization, memory, temperature, power)
  • CO2 emissions and power cost tracking
  • Leaderboard aggregation and comparison

Quick Links

Installation

pip install smoltrace

Citation

If you use SMOLTRACE in your research, please cite:

@software{smoltrace,
  title = {SMOLTRACE: Benchmarking Framework for Smolagents},
  author = {Thakkar, Kshitij},
  url = {https://github.com/Mandark-droid/SMOLTRACE},
  year = {2025}
}

Generated by SMOLTRACE
Downloads last month
4