Upload pervasive_imdb.py
Browse files- pervasive_imdb.py +144 -0
pervasive_imdb.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
from typing import List, Tuple, Dict
|
| 16 |
+
from pathlib import Path
|
| 17 |
+
import json
|
| 18 |
+
import os
|
| 19 |
+
import numpy as np
|
| 20 |
+
|
| 21 |
+
import datasets
|
| 22 |
+
|
| 23 |
+
_CITATION = """\
|
| 24 |
+
@inproceedings{DBLP:conf/nips/NorthcuttAM21,
|
| 25 |
+
author = {Curtis G. Northcutt and
|
| 26 |
+
Anish Athalye and
|
| 27 |
+
Jonas Mueller},
|
| 28 |
+
editor = {Joaquin Vanschoren and
|
| 29 |
+
Sai{-}Kit Yeung},
|
| 30 |
+
title = {Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks},
|
| 31 |
+
booktitle = {Proceedings of the Neural Information Processing Systems Track on
|
| 32 |
+
Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December
|
| 33 |
+
2021, virtual},
|
| 34 |
+
year = {2021},
|
| 35 |
+
url = {https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/f2217062e9a397a1dca429e7d70bc6ca-Abstract-round1.html},
|
| 36 |
+
timestamp = {Thu, 05 May 2022 16:53:59 +0200},
|
| 37 |
+
biburl = {https://dblp.org/rec/conf/nips/NorthcuttAM21.bib},
|
| 38 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 39 |
+
}
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
_DATASETNAME = "pervasive_imdb"
|
| 43 |
+
|
| 44 |
+
_DESCRIPTION = """\
|
| 45 |
+
This dataset is designed for Annotation Error Detection.
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
_HOMEPAGE = ""
|
| 49 |
+
|
| 50 |
+
_LICENSE = "GPL3"
|
| 51 |
+
|
| 52 |
+
_URLS = {
|
| 53 |
+
"imdb": "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz",
|
| 54 |
+
"mturk": "https://raw.githubusercontent.com/cleanlab/label-errors/main/mturk/imdb_mturk.json",
|
| 55 |
+
"indexing": "https://raw.githubusercontent.com/cleanlab/label-errors/main/dataset_indexing/imdb_test_set_index_to_filename.json"
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
_SOURCE_VERSION = "1.0.0"
|
| 59 |
+
|
| 60 |
+
_SCHEMA = datasets.Features({
|
| 61 |
+
"id": datasets.Value("string"),
|
| 62 |
+
"text": datasets.Value("string"),
|
| 63 |
+
"label": datasets.Value("string"),
|
| 64 |
+
"true_label": datasets.Value("string"),
|
| 65 |
+
})
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
class InconsistenciesFlights(datasets.GeneratorBasedBuilder):
|
| 69 |
+
_VERSION = datasets.Version(_SOURCE_VERSION)
|
| 70 |
+
|
| 71 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 72 |
+
return datasets.DatasetInfo(
|
| 73 |
+
description=_DESCRIPTION,
|
| 74 |
+
features=_SCHEMA,
|
| 75 |
+
supervised_keys=None,
|
| 76 |
+
homepage=_HOMEPAGE,
|
| 77 |
+
citation=_CITATION,
|
| 78 |
+
license=_LICENSE,
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
| 82 |
+
"""Returns SplitGenerators."""
|
| 83 |
+
imdb_dir = dl_manager.download_and_extract(_URLS["imdb"])
|
| 84 |
+
mturk_file = dl_manager.download_and_extract(_URLS["mturk"])
|
| 85 |
+
indexing_file = dl_manager.download_and_extract(_URLS["indexing"])
|
| 86 |
+
|
| 87 |
+
return [
|
| 88 |
+
datasets.SplitGenerator(
|
| 89 |
+
name=datasets.Split.TRAIN,
|
| 90 |
+
# Whatever you put in gen_kwargs will be passed to _generate_examples
|
| 91 |
+
gen_kwargs={
|
| 92 |
+
"imdb_dir": Path(imdb_dir) / "aclImdb",
|
| 93 |
+
"mturk_file": Path(mturk_file),
|
| 94 |
+
"indexing_file": Path(indexing_file)
|
| 95 |
+
},
|
| 96 |
+
),
|
| 97 |
+
]
|
| 98 |
+
|
| 99 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def _generate_examples(self, imdb_dir: Path, mturk_file: Path, indexing_file: Path) -> Tuple[int, Dict]:
|
| 103 |
+
"""Yields examples as (key, example) tuples."""
|
| 104 |
+
walk_order = {}
|
| 105 |
+
# We don't deal with train set indices, so any order is fine for the train set.
|
| 106 |
+
walk_order['train'] = [d + z for d in ["neg/", "pos/"] \
|
| 107 |
+
for z in os.listdir(imdb_dir / 'train' / d)]
|
| 108 |
+
# Test set walk order needs to match our order to map errors correctly.
|
| 109 |
+
with open(indexing_file, 'r') as rf:
|
| 110 |
+
walk_order['test'] = json.load(rf)
|
| 111 |
+
|
| 112 |
+
# This text dict stores the text data with keys ['train', 'test']
|
| 113 |
+
text = {}
|
| 114 |
+
# Read in text data for IMDB
|
| 115 |
+
for dataset in ['train', 'test']:
|
| 116 |
+
text[dataset] = []
|
| 117 |
+
dataset_dir = imdb_dir / dataset
|
| 118 |
+
for i, fn in enumerate(walk_order[dataset]):
|
| 119 |
+
with open(dataset_dir / fn, 'r') as rf:
|
| 120 |
+
text[dataset].append(rf.read())
|
| 121 |
+
|
| 122 |
+
idx_to_mturk = {}
|
| 123 |
+
|
| 124 |
+
with open(mturk_file) as f:
|
| 125 |
+
mturk_data = json.load(f)
|
| 126 |
+
for datapoint in mturk_data:
|
| 127 |
+
idx = walk_order['test'].index(datapoint['id'].removeprefix('test/') + ".txt")
|
| 128 |
+
idx_to_mturk[idx] = datapoint["mturk"]
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
# The given labels for both train and test set are the same.
|
| 132 |
+
labels = np.concatenate([np.zeros(12500), np.ones(12500)]).astype(int)
|
| 133 |
+
|
| 134 |
+
for i in range(25000):
|
| 135 |
+
if i in idx_to_mturk and idx_to_mturk[i]["given"] < 3:
|
| 136 |
+
true_label = not bool(labels[i])
|
| 137 |
+
else:
|
| 138 |
+
true_label = bool(labels[i])
|
| 139 |
+
yield (i, {
|
| 140 |
+
"id": str(i),
|
| 141 |
+
"text": text["test"][i],
|
| 142 |
+
"label": bool(labels[i]),
|
| 143 |
+
"true_label": true_label
|
| 144 |
+
})
|