kaitongg/shoe-length-predictor-lightgbmxt
Tabular Regression
•
Updated
US size
int64 360
800
| Shoe size (mm)
int64 218
240
| Actual measured shoe length
int64 220
240
| Type of shoe
stringclasses 7
values | Shoe color
stringlengths 3
6
| Shoe Brand
stringlengths 3
15
|
|---|---|---|---|---|---|
360
| 225
| 235
|
Sneakers
|
Grey
|
Asics
|
700
| 230
| 240
|
Slippers
|
White
|
Crocs
|
800
| 240
| 240
|
Loafers
|
Black
|
Lemaire
|
600
| 230
| 230
|
Sneakers
|
Purple
|
Nike
|
600
| 230
| 225
|
Slippers
|
Black
|
North Face
|
600
| 235
| 230
|
Sneakers
|
White
|
Nike
|
600
| 225
| 225
|
Loafers
|
Brown
|
Lemaire
|
600
| 230
| 230
|
Sneakers
|
White
|
Nike
|
600
| 230
| 240
|
Sneakers
|
Blue
|
Balenciaga
|
600
| 230
| 225
|
Loafers
|
Black
|
Loulouseoul
|
600
| 230
| 230
|
Slippers
|
Red
|
Puma
|
600
| 230
| 230
|
Slippers
|
White
|
Onitsuka Tiger
|
600
| 230
| 230
|
Slippers
|
Pink
|
Onitsuka Tiger
|
600
| 230
| 240
|
Slippers
|
Green
|
Adidas
|
600
| 230
| 240
|
Slippers
|
Pink
|
Adidas
|
500
| 220
| 240
|
Slippers
|
Black
|
Adidas
|
600
| 220
| 220
|
Heels
|
Red
|
Steve Madden
|
500
| 220
| 225
|
Heels
|
Black
|
Reformation
|
600
| 220
| 220
|
Boots
|
Brown
|
Steve Madden
|
600
| 220
| 220
|
Boots
|
Black
|
Steve Madden
|
700
| 235
| 240
|
Heels
|
Blue
|
Steve Madden
|
600
| 225
| 225
|
Sneakers
|
Black
|
Nike
|
600
| 220
| 225
|
Heels
|
White
|
Dolce Vita
|
600
| 230
| 230
|
Boots
|
Beige
|
Loulouseoul
|
500
| 223
| 230
|
Sneakers
|
White
|
Koi
|
500
| 218
| 225
|
Heels
|
Black
|
Koi
|
500
| 223
| 230
|
Sneakers
|
White
|
Koi
|
600
| 230
| 225
|
Heels
|
Black
|
Bottega Veneta
|
700
| 240
| 235
|
Loafers
|
Black
|
Ami
|
500
| 235
| 235
|
Sneakers
|
Grey
|
Asics
|
Purpose: This dataset was created for tabular data analysis and prediction tasks involving shoe measurements, developed as part of CMU 24-679 coursework to explore tabular data augmentation techniques.
Quick Stats:
Contact: maryzhang@cmu.edu
| Statistic | US Size | Shoe Size (mm) | Actual Length (mm) |
|---|---|---|---|
| count | 30.0 | 30.0 | 30.0 |
| mean | 5.8 | 227.7 | 230.6 |
| std | 0.7 | 5.8 | 6.2 |
| min | 5.0 | 218.0 | 222.0 |
| 25% | 5.0 | 223.0 | 225.0 |
| 50% | 6.0 | 230.0 | 230.0 |
| 75% | 6.0 | 230.0 | 235.0 |
| max | 7.5 | 240.0 | 240.0 |
US size: Integer (US shoe size, 6-13)Shoe size (mm): Integer (manufacturer size in mm)Actual measured shoe length: Integer (measured length in mm)Type of shoe: String (Sneakers, Boots, Dress Shoes, Athletic)Shoe color: String (Black, White, Brown, Gray, Other)Shoe Brand: String (Nike, Adidas, Vans, Converse, etc.)| Category | Values | Most Common |
|---|---|---|
| Type | 4 unique | Sneakers (50%) |
| Color | 5 unique | Black (40%) |
| Brand | 6 unique | Nike (27%) |
Data collected January-February 2025:
Generated ~10x samples using:
from datasets import load_dataset
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
# Load dataset
dataset = load_dataset("maryzhang/hw1-24679-tabular-dataset")
# Convert to DataFrame
df = pd.DataFrame(dataset['augmented'])
# Prepare features
X = df[['US size', 'Shoe size (mm)']]
y = df['Actual measured shoe length']
# Train model
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = RandomForestRegressor()
model.fit(X_train, y_train)
# Evaluate
score = model.score(X_test, y_test)
print(f"R² Score: {score:.3f}")
## Exploratory Data Analysis
bibtex@dataset{zhang2025shoe, author = {Mary Zhang}, title = {Shoe Size Measurements Tabular Dataset}, year = {2025}, publisher = {Hugging Face}, note = {CMU 24-679 Homework 1}, url = {https://huggingface.co/datasets/maryzhang/hw1-24679-tabular-dataset} }
This dataset is released under the MIT License.
Dataset created by Mary Zhang for CMU 24-679. For questions or issues, please contact maryzhang@cmu.edu.