Datasets:
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,31 +1,56 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
dtype: int64
|
| 6 |
-
- name: metadata
|
| 7 |
-
dtype: string
|
| 8 |
-
- name: classification_prompt
|
| 9 |
-
dtype: string
|
| 10 |
-
- name: classification_completion
|
| 11 |
-
dtype: string
|
| 12 |
-
- name: classification_text
|
| 13 |
-
dtype: string
|
| 14 |
-
- name: improved_signature
|
| 15 |
-
dtype: string
|
| 16 |
-
- name: improved_model_weights
|
| 17 |
-
dtype: string
|
| 18 |
-
- name: training_metrics
|
| 19 |
-
dtype: string
|
| 20 |
-
splits:
|
| 21 |
-
- name: train
|
| 22 |
-
num_bytes: 910326957
|
| 23 |
-
num_examples: 10000
|
| 24 |
-
download_size: 545568638
|
| 25 |
-
dataset_size: 910326957
|
| 26 |
-
configs:
|
| 27 |
-
- config_name: default
|
| 28 |
-
data_files:
|
| 29 |
-
- split: train
|
| 30 |
-
path: data/train-*
|
| 31 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language: en
|
| 3 |
+
task_categories:
|
| 4 |
+
- text-generation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
---
|
| 6 |
+
# Subject Models for Interpretability Training
|
| 7 |
+
|
| 8 |
+
These examples are intended for training an interpreter to:
|
| 9 |
+
- Identify what patterns a model classifies as positive based on an activation signature, with examples of: trained model + signature → pattern identification.
|
| 10 |
+
|
| 11 |
+
| Signature Extraction | |
|
| 12 |
+
|----------------------|-----------------------------------------------------------------------------|
|
| 13 |
+
| Neuron Profile Methods | mean, std, pca, fourier |
|
| 14 |
+
| Prompt Format | separate |
|
| 15 |
+
| Signature Dataset | configs/dataset_gen/signature_dataset.json |
|
| 16 |
+
|
| 17 |
+
| Model Architecture | |
|
| 18 |
+
|----------------------|-----------------------------------------------------------------------------|
|
| 19 |
+
| Number of Layers | 6 to 8 |
|
| 20 |
+
| Neurons per Layer | 7 to 12 |
|
| 21 |
+
| Activation Types | relu, gelu |
|
| 22 |
+
| Pattern Vocab Size | 10 |
|
| 23 |
+
| Pattern Sequence Len | 5 |
|
| 24 |
+
|
| 25 |
+
| Training Datasets | |
|
| 26 |
+
|----------------------|-----------------------------------------------------------------------------|
|
| 27 |
+
| Enabled Patterns | palindrome, sorted_ascending, sorted_descending, alternating, contains_abc, starts_with, ends_with, no_repeats, has_majority, increasing_pairs, decreasing_pairs, vowel_consonant, first_last_match, mountain_pattern |
|
| 28 |
+
| Patterns per Batch | 1-1 |
|
| 29 |
+
| Pos/Neg Ratio | 1:1 |
|
| 30 |
+
| Target Total Examples per Subject Model | 250 |
|
| 31 |
+
|
| 32 |
+
| Staged Training | |
|
| 33 |
+
|----------------------|-----------------------------------------------------------------------------|
|
| 34 |
+
| Min Improvement Threshold | 0.05 (5.0%) |
|
| 35 |
+
| Corruption Rate | 0.15 (15.0%) |
|
| 36 |
+
|
| 37 |
+
## Dataset Fields
|
| 38 |
+
|
| 39 |
+
| Field | Description |
|
| 40 |
+
|----------------------|-----------------------------------------------------------------------------|
|
| 41 |
+
| example_id | Unique identifier for each example |
|
| 42 |
+
| metadata | JSON string containing: |
|
| 43 |
+
| | - `target_pattern`: The pattern that was corrupted during training |
|
| 44 |
+
| | - `degraded_accuracy`: Accuracy of the model trained on corrupted data |
|
| 45 |
+
| | - `improved_accuracy`: Accuracy of the model after training on clean data |
|
| 46 |
+
| | - `improvement`: Delta between degraded and improved accuracy |
|
| 47 |
+
| | - `model_config`: Subject model architecture and hyperparameters |
|
| 48 |
+
| | - `corruption_stats`: Details about label corruption |
|
| 49 |
+
| | - `selected_patterns`: All patterns in the subject model's training dataset |
|
| 50 |
+
| | - `precision`: Model weight precision |
|
| 51 |
+
| | - `quantization`: Quantization type applied to weights |
|
| 52 |
+
| | - `config_signature`: Hash of critical config fields for validation |
|
| 53 |
+
| classification_prompt | Input prompt with improved model weights and signature |
|
| 54 |
+
| classification_completion | Target completion identifying the pattern |
|
| 55 |
+
| classification_text | Full concatenated text (prompt + completion) |
|
| 56 |
+
|