maximuspowers commited on
Commit
04d1cff
·
verified ·
1 Parent(s): c97f38d

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +54 -29
README.md CHANGED
@@ -1,31 +1,56 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: example_id
5
- dtype: int64
6
- - name: metadata
7
- dtype: string
8
- - name: classification_prompt
9
- dtype: string
10
- - name: classification_completion
11
- dtype: string
12
- - name: classification_text
13
- dtype: string
14
- - name: improved_signature
15
- dtype: string
16
- - name: improved_model_weights
17
- dtype: string
18
- - name: training_metrics
19
- dtype: string
20
- splits:
21
- - name: train
22
- num_bytes: 910326957
23
- num_examples: 10000
24
- download_size: 545568638
25
- dataset_size: 910326957
26
- configs:
27
- - config_name: default
28
- data_files:
29
- - split: train
30
- path: data/train-*
31
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
+ task_categories:
4
+ - text-generation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
+ # Subject Models for Interpretability Training
7
+
8
+ These examples are intended for training an interpreter to:
9
+ - Identify what patterns a model classifies as positive based on an activation signature, with examples of: trained model + signature → pattern identification.
10
+
11
+ | Signature Extraction | |
12
+ |----------------------|-----------------------------------------------------------------------------|
13
+ | Neuron Profile Methods | mean, std, pca, fourier |
14
+ | Prompt Format | separate |
15
+ | Signature Dataset | configs/dataset_gen/signature_dataset.json |
16
+
17
+ | Model Architecture | |
18
+ |----------------------|-----------------------------------------------------------------------------|
19
+ | Number of Layers | 6 to 8 |
20
+ | Neurons per Layer | 7 to 12 |
21
+ | Activation Types | relu, gelu |
22
+ | Pattern Vocab Size | 10 |
23
+ | Pattern Sequence Len | 5 |
24
+
25
+ | Training Datasets | |
26
+ |----------------------|-----------------------------------------------------------------------------|
27
+ | Enabled Patterns | palindrome, sorted_ascending, sorted_descending, alternating, contains_abc, starts_with, ends_with, no_repeats, has_majority, increasing_pairs, decreasing_pairs, vowel_consonant, first_last_match, mountain_pattern |
28
+ | Patterns per Batch | 1-1 |
29
+ | Pos/Neg Ratio | 1:1 |
30
+ | Target Total Examples per Subject Model | 250 |
31
+
32
+ | Staged Training | |
33
+ |----------------------|-----------------------------------------------------------------------------|
34
+ | Min Improvement Threshold | 0.05 (5.0%) |
35
+ | Corruption Rate | 0.15 (15.0%) |
36
+
37
+ ## Dataset Fields
38
+
39
+ | Field | Description |
40
+ |----------------------|-----------------------------------------------------------------------------|
41
+ | example_id | Unique identifier for each example |
42
+ | metadata | JSON string containing: |
43
+ | | - `target_pattern`: The pattern that was corrupted during training |
44
+ | | - `degraded_accuracy`: Accuracy of the model trained on corrupted data |
45
+ | | - `improved_accuracy`: Accuracy of the model after training on clean data |
46
+ | | - `improvement`: Delta between degraded and improved accuracy |
47
+ | | - `model_config`: Subject model architecture and hyperparameters |
48
+ | | - `corruption_stats`: Details about label corruption |
49
+ | | - `selected_patterns`: All patterns in the subject model's training dataset |
50
+ | | - `precision`: Model weight precision |
51
+ | | - `quantization`: Quantization type applied to weights |
52
+ | | - `config_signature`: Hash of critical config fields for validation |
53
+ | classification_prompt | Input prompt with improved model weights and signature |
54
+ | classification_completion | Target completion identifying the pattern |
55
+ | classification_text | Full concatenated text (prompt + completion) |
56
+