Commit
·
5973fe6
1
Parent(s):
c146a92
Update README
Browse files
README.md
CHANGED
|
@@ -6,7 +6,7 @@ tags:
|
|
| 6 |
- music
|
| 7 |
- spectrogram
|
| 8 |
size_categories:
|
| 9 |
-
- n<
|
| 10 |
---
|
| 11 |
|
| 12 |
## Google/MusicCapsをスペクトログラムにしたデータ。
|
|
@@ -29,7 +29,7 @@ size_categories:
|
|
| 29 |
</tbody>
|
| 30 |
</table>
|
| 31 |
|
| 32 |
-
###
|
| 33 |
|
| 34 |
* コード:https://colab.research.google.com/drive/13m792FEoXszj72viZuBtusYRUL1z6Cu2?usp=sharing
|
| 35 |
* 参考にしたKaggle Notebook : https://www.kaggle.com/code/osanseviero/musiccaps-explorer
|
|
@@ -48,7 +48,140 @@ image = Image.fromarray(np.uint8(D), mode='L') # 'L'は1チャンネルのグ
|
|
| 48 |
image.save('spectrogram_{}.png')
|
| 49 |
```
|
| 50 |
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
```python
|
| 53 |
im = Image.open("pngファイル")
|
| 54 |
db_ud = np.uint8(np.array(im))
|
|
@@ -60,4 +193,4 @@ print(amp.shape)
|
|
| 60 |
|
| 61 |
y_inv = librosa.griffinlim(amp*200)
|
| 62 |
display(IPython.display.Audio(y_inv, rate=sr))
|
| 63 |
-
```
|
|
|
|
| 6 |
- music
|
| 7 |
- spectrogram
|
| 8 |
size_categories:
|
| 9 |
+
- 10K<n<100K
|
| 10 |
---
|
| 11 |
|
| 12 |
## Google/MusicCapsをスペクトログラムにしたデータ。
|
|
|
|
| 29 |
</tbody>
|
| 30 |
</table>
|
| 31 |
|
| 32 |
+
### How this dataset was made
|
| 33 |
|
| 34 |
* コード:https://colab.research.google.com/drive/13m792FEoXszj72viZuBtusYRUL1z6Cu2?usp=sharing
|
| 35 |
* 参考にしたKaggle Notebook : https://www.kaggle.com/code/osanseviero/musiccaps-explorer
|
|
|
|
| 48 |
image.save('spectrogram_{}.png')
|
| 49 |
```
|
| 50 |
|
| 51 |
+
## How to use this
|
| 52 |
+
* <font color="red">Subset <b>data 1300-1600</b> and <b>data 3400-3600</b> are not working now, so please get subset_name_list</n>
|
| 53 |
+
those were removed first</font>.
|
| 54 |
+
### get information about this dataset:
|
| 55 |
+
```python
|
| 56 |
+
# Extract dataset's information using huggingface API
|
| 57 |
+
import requests
|
| 58 |
+
headers = {"Authorization": f"Bearer {API token}"}
|
| 59 |
+
API_URL = "https://datasets-server.huggingface.co/info?dataset=mb23%2FGraySpectrogram"
|
| 60 |
+
def query():
|
| 61 |
+
response = requests.get(API_URL, headers=headers)
|
| 62 |
+
return response.json()
|
| 63 |
+
data = query()
|
| 64 |
+
|
| 65 |
+
# Make subset name list.
|
| 66 |
+
subset__name_list = list()
|
| 67 |
+
for dic in data["failed"]:
|
| 68 |
+
subset_name_list.append(dic["config"])
|
| 69 |
+
# print(dic["config"])
|
| 70 |
+
subset_name_list = sorted(subset_list, key=natural_keys)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
remove_list = [
|
| 74 |
+
"data 1300-1600",
|
| 75 |
+
"data 3400-3600"
|
| 76 |
+
]
|
| 77 |
+
for remove_dataset in remove_list:
|
| 78 |
+
if remove_dataset in subset_list:
|
| 79 |
+
subset_list.remove(remove_dataset)
|
| 80 |
+
else:
|
| 81 |
+
pass
|
| 82 |
+
subset_list
|
| 83 |
+
|
| 84 |
+
'''
|
| 85 |
+
return subset name list. for example,
|
| 86 |
+
['data 0-200',
|
| 87 |
+
'data 200-600',
|
| 88 |
+
'data 600-1000',
|
| 89 |
+
'data 1000-1300',
|
| 90 |
+
'data 1600-2000',
|
| 91 |
+
'data 2000-2200',
|
| 92 |
+
'data 2200-2400',
|
| 93 |
+
'data 2400-2600',
|
| 94 |
+
'data 2600-2800',
|
| 95 |
+
'data 3000-3200',
|
| 96 |
+
'data 3200-3400',
|
| 97 |
+
'data 3600-3800',
|
| 98 |
+
'data 3800-4000',
|
| 99 |
+
'data 4000-4200',
|
| 100 |
+
'data 4200-4400',
|
| 101 |
+
'data 4400-4600',
|
| 102 |
+
'data 4600-4800',
|
| 103 |
+
'data 4800-5000',
|
| 104 |
+
'data 5000-5200',
|
| 105 |
+
'data 5200-5520']
|
| 106 |
+
'''
|
| 107 |
+
```
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
### load dataset and change to dataloader:
|
| 111 |
+
* You can use the code below:
|
| 112 |
+
* <font color="red">...but (;・∀・)I don't know whether this code works efficiently, because I haven't tried this code so far</color>
|
| 113 |
+
```python
|
| 114 |
+
import datasets
|
| 115 |
+
from datasets import load_dataset, DatasetDict
|
| 116 |
+
from torchvision import transforms
|
| 117 |
+
from torch.utils.data import DataLoader
|
| 118 |
+
BATCH_SIZE = ???
|
| 119 |
+
IMAGE_SIZE = ???
|
| 120 |
+
TRAIN_SIZE = ??? # the number of training data
|
| 121 |
+
TEST_SIZE = ??? # the number of test data
|
| 122 |
+
|
| 123 |
+
def load_datasets():
|
| 124 |
+
|
| 125 |
+
# Define data transforms
|
| 126 |
+
data_transforms = [
|
| 127 |
+
transforms.Resize((IMG_SIZE, IMG_SIZE)),
|
| 128 |
+
transforms.ToTensor(), # Scales data into [0,1]
|
| 129 |
+
transforms.Lambda(lambda t: (t * 2) - 1) # Scale between [-1, 1]
|
| 130 |
+
]
|
| 131 |
+
data_transform = transforms.Compose(data_transforms)
|
| 132 |
+
|
| 133 |
+
data = load_dataset("mb23/GraySpectrogram", subset_list[0])
|
| 134 |
+
for subset in subset_list:
|
| 135 |
+
# Confirm subset_list doesn't include "remove_list" datasets in the above cell.
|
| 136 |
+
print(subset)
|
| 137 |
+
new_ds = load_dataset("mb23/GraySpectrogram", subset)
|
| 138 |
+
new_dataset_train = datasets.concatenate_datasets([data["train"], new_ds["train"]])
|
| 139 |
+
new_dataset_test = datasets.concatenate_datasets([data["test"], new_ds["test"]])
|
| 140 |
+
|
| 141 |
+
# take place of data[split]
|
| 142 |
+
data["train"] = new_dataset_train
|
| 143 |
+
data["test"] = new_dataset_test
|
| 144 |
+
|
| 145 |
+
# memo:
|
| 146 |
+
# 特徴量上手く抽出する方法が...わからん。これは力づく。
|
| 147 |
+
# 本当はload_dataset()の時点で抽出したかったけど、無理そう
|
| 148 |
+
# リポジトリ作り直してpush_to_hub()したほうがいいかもしれない。
|
| 149 |
+
|
| 150 |
+
new_dataset = dict()
|
| 151 |
+
new_dataset["train"] = Dataset.from_dict({
|
| 152 |
+
"image" : data["train"]["image"],
|
| 153 |
+
"caption" : data["train"]["caption"]
|
| 154 |
+
})
|
| 155 |
+
|
| 156 |
+
new_dataset["test"] = Dataset.from_dict({
|
| 157 |
+
"image" : data["test"]["image"],
|
| 158 |
+
"caption" : data["test"]["caption"]
|
| 159 |
+
})
|
| 160 |
+
data = datasets.DatasetDict(new_dataset)
|
| 161 |
+
train = data["train"]
|
| 162 |
+
test = data["test"]
|
| 163 |
+
|
| 164 |
+
for idx in range(len(train["image"])):
|
| 165 |
+
train["image"][idx] = data_transform(train["image"][idx])
|
| 166 |
+
test["image"][idx] = data_transform(test["image"][idx])
|
| 167 |
+
|
| 168 |
+
train = Dataset.from_dict(train)
|
| 169 |
+
train = train.with_format("torch") # リスト型回避
|
| 170 |
+
test = Dataset.from_dict(train)
|
| 171 |
+
test = test.with_format("torch") # リスト型回避
|
| 172 |
+
|
| 173 |
+
# or
|
| 174 |
+
train_loader = DataLoader(train, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)
|
| 175 |
+
test_loader = DataLoader(test, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)
|
| 176 |
+
return train_loader, test_loader
|
| 177 |
+
|
| 178 |
+
```
|
| 179 |
+
* then try this?
|
| 180 |
+
```
|
| 181 |
+
train_loader, test_loader = load_datasets()
|
| 182 |
+
```
|
| 183 |
+
|
| 184 |
+
### Recover music(wave form) from sprctrogram
|
| 185 |
```python
|
| 186 |
im = Image.open("pngファイル")
|
| 187 |
db_ud = np.uint8(np.array(im))
|
|
|
|
| 193 |
|
| 194 |
y_inv = librosa.griffinlim(amp*200)
|
| 195 |
display(IPython.display.Audio(y_inv, rate=sr))
|
| 196 |
+
```
|