|
|
---
|
|
|
license: mit
|
|
|
task_categories:
|
|
|
- tabular-regression
|
|
|
- tabular-classification
|
|
|
pretty_name: NMRGym
|
|
|
language:
|
|
|
- en
|
|
|
tags:
|
|
|
- chemistry
|
|
|
- nmr
|
|
|
- spectroscopy
|
|
|
- molecular-property-prediction
|
|
|
- drug-discovery
|
|
|
- cheminformatics
|
|
|
size_categories:
|
|
|
- 100K<n<1M
|
|
|
---
|
|
|
|
|
|
|
|
|
|
|
|
# NMRGym
|
|
|
Benchmark on NMR Spectrum.
|
|
|
!!! **Important:** !!!
|
|
|
If you need access to the dataset, please email [zhengf723@connect.hkust-gz.edu.cn](mailto:zhengf723@connect.hkust-gz.edu.cn)
|
|
|
|
|
|
## Data Sources (Before Cleaning)
|
|
|
|
|
|
| Source | Records | Unique SMILES | Total Spectrums | ¹H NMR | ¹³C NMR |
|
|
|
| :------------------ | ----------: | ------------: | --------------: | ----------: | ----------: |
|
|
|
| **CH-NP** | 12,165 | 12,165 | 24,326 | 12,161 | 12,165 |
|
|
|
| **HMDB** | 1,791 | 896 | 3,278 | 1,566 | 1,712 |
|
|
|
| **NMRBank** | 148,914 | 142,964 | 297,043 | 148,437 | 148,606 |
|
|
|
| **NMRShiftDB 2024** | 41,019 | 39,631 | 50,416 | 18,570 | 31,846 |
|
|
|
| **NP-MRD** | 489,569 | 243,598 | 950,242 | 462,233 | 488,009 |
|
|
|
| **PubChem-NMR** | 1,647 | 1,535 | 2,605 | 1,556 | 1,049 |
|
|
|
| **SDBS** | 12,926 | 12,626 | 22,711 | 11,522 | 11,189 |
|
|
|
| **Total** | **708,031** | **430,690** | **1,350,621** | **656,045** | **694,576** |
|
|
|
|
|
|
---
|
|
|
|
|
|
## Balanced Dataset Statistics (After Cleaning & Processing)
|
|
|
|
|
|
After data cleaning, filtering, quality control, and balanced scaffold splitting, the final NMRGym dataset consists of three splits:
|
|
|
|
|
|
| Split | Records | Unique SMILES | ¹H NMR | ¹³C NMR |
|
|
|
| :------- | ----------: | ------------: | ----------: | ----------: |
|
|
|
| **Train** | 402,676 | 250,822 | 402,676 | 402,676 |
|
|
|
| **Val** | 53,672 | 50,716 | 53,672 | 53,672 |
|
|
|
| **Test** | 80,069 | 74,568 | 80,069 | 80,069 |
|
|
|
| **Total** | **536,417** | **376,106** | **536,417** | **536,417** |
|
|
|
|
|
|
### Dataset Visualizations
|
|
|
|
|
|
<!-- 
|
|
|
*Figure 1: Overview of dataset statistics including total records, unique SMILES, data duplication, NMR spectra types, and top elements.*
|
|
|
|
|
|

|
|
|
*Figure 2: Distribution of 22 functional groups across train, validation, and test sets.*
|
|
|
|
|
|

|
|
|
*Figure 3: Distribution of common elements (C, H, O, N, F, Cl, Br, S, P, I) across datasets.* -->
|
|
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
### Quick Checklist
|
|
|
|
|
|
* [✅] Data cleaning: Heavy atom filtering and illegal smiles exclusion.
|
|
|
* [✅] Data Summary and Visualization.
|
|
|
* [✅] Data Split.
|
|
|
* [] 3D coord. generation. Rdkit.
|
|
|
* [✅] Toxic Property label generation.
|
|
|
* [✅] Function Group label generation.
|
|
|
|
|
|
---
|
|
|
## NMRGym Split Dataset Format (`nmrgym_spec_filtered_both_{train,test}.pkl`)
|
|
|
|
|
|
This dataset contains post-QC, scaffold-split molecular entries with paired NMR spectra, structure fingerprints, functional group annotations, and toxicity labels.
|
|
|
|
|
|
Each `.pkl` file is a Python list of dictionaries. Each dictionary corresponds to a single unique molecule.
|
|
|
|
|
|
### Example record structure
|
|
|
|
|
|
```python
|
|
|
{
|
|
|
"smiles": "CC(=O)Oc1ccccc1C(=O)O",
|
|
|
"h_shift": [7.25, 7.32, 2.14, 1.27],
|
|
|
"c_shift": [128.5, 130.1, 172.9, 20.7],
|
|
|
"fingerprint": np.ndarray(shape=(2048,), dtype=np.uint8),
|
|
|
"fg_onehot": np.ndarray(shape=(22,), dtype=np.uint8),
|
|
|
"toxicity": np.ndarray(shape=(7,), dtype=np.int8),
|
|
|
}
|
|
|
```
|
|
|
|
|
|
---
|
|
|
|
|
|
### Field definitions
|
|
|
|
|
|
**`smiles`** (`str`)
|
|
|
Canonical SMILES string for this molecule.
|
|
|
|
|
|
**`h_shift`** (`list[float]`)
|
|
|
Experimental or curated ¹H NMR peak positions in ppm.
|
|
|
|
|
|
**`c_shift`** (`list[float]`)
|
|
|
Experimental or curated ¹³C NMR peak positions in ppm.
|
|
|
|
|
|
**`fingerprint`** (`np.ndarray(2048,)`, `uint8`)
|
|
|
RDKit Morgan fingerprint (radius = 2, 2048 bits). Encodes local circular substructures.
|
|
|
|
|
|
**`fg_onehot`** (`np.ndarray(22,)`, `uint8`)
|
|
|
Binary functional-group vector. `1` means the SMARTS pattern is present in the molecule.
|
|
|
Index mapping (0→21):
|
|
|
|
|
|
1. Alcohol
|
|
|
2. Carboxylic Acid
|
|
|
3. Ester
|
|
|
4. Ether
|
|
|
5. Aldehyde
|
|
|
6. Ketone
|
|
|
7. Alkene
|
|
|
8. Alkyne
|
|
|
9. Benzene
|
|
|
10. Primary Amine
|
|
|
11. Secondary Amine
|
|
|
12. Tertiary Amine
|
|
|
13. Amide
|
|
|
14. Cyano
|
|
|
15. Fluorine
|
|
|
16. Chlorine
|
|
|
17. Bromine
|
|
|
18. Iodine
|
|
|
19. Sulfonamide
|
|
|
20. Sulfone
|
|
|
21. Sulfide
|
|
|
22. Phosphoric Acid
|
|
|
|
|
|
**`toxicity`** (`np.ndarray(7,)`, `int8`)
|
|
|
Seven binary toxicity endpoints (1 = toxic / positive, 0 = negative):
|
|
|
0. AMES (mutagenicity)
|
|
|
|
|
|
1. DILI (Drug-Induced Liver Injury)
|
|
|
2. Carcinogens_Lagunin (carcinogenicity)
|
|
|
3. hERG (cardiotoxic channel block)
|
|
|
4. ClinTox (clinical toxicity)
|
|
|
5. NR-ER (endocrine / estrogen receptor)
|
|
|
6. SR-ARE (oxidative stress response)
|
|
|
|
|
|
---
|
|
|
|
|
|
### Train / Test meaning
|
|
|
|
|
|
* `nmrgym_spec_filtered_both_train.pkl`: scaffold-based training set.
|
|
|
* `nmrgym_spec_filtered_both_test.pkl`: scaffold-disjoint test set.
|
|
|
|
|
|
Scaffold split is computed using Bemis–Murcko scaffolds. This means test scaffolds do not appear in train, simulating generalization to new chemotypes instead of just new stereoisomers.
|
|
|
|
|
|
---
|
|
|
|
|
|
### Minimal usage example
|
|
|
|
|
|
```python
|
|
|
import pickle
|
|
|
from rdkit import Chem
|
|
|
from rdkit.Chem import AllChem
|
|
|
|
|
|
# load the dataset
|
|
|
test_path = "/gemini/user/private/NMRGym/utils/split_output/nmrgym_spec_filtered_both_test.pkl"
|
|
|
with open(test_path, "rb") as f:
|
|
|
dataset = pickle.load(f)
|
|
|
|
|
|
print("num molecules:", len(dataset))
|
|
|
print("keys:", dataset[0].keys())
|
|
|
print("example toxicity vector:", dataset[0]["toxicity"])
|
|
|
|
|
|
# build 3D conformer for the first molecule
|
|
|
smi = dataset[0]["smiles"]
|
|
|
mol = Chem.MolFromSmiles(smi)
|
|
|
mol = Chem.AddHs(mol) # add hydrogens for 3D
|
|
|
AllChem.EmbedMolecule(mol, AllChem.ETKDG())
|
|
|
AllChem.UFFOptimizeMolecule(mol)
|
|
|
|
|
|
# extract 3D coordinates (in Å)
|
|
|
conf = mol.GetConformer()
|
|
|
coords = []
|
|
|
for atom_idx in range(mol.GetNumAtoms()):
|
|
|
pos = conf.GetAtomPosition(atom_idx)
|
|
|
coords.append([pos.x, pos.y, pos.z])
|
|
|
|
|
|
print("3D coords for first molecule (Angstrom):")
|
|
|
for i, (x,y,z) in enumerate(coords):
|
|
|
sym = mol.GetAtomWithIdx(i).GetSymbol()
|
|
|
print(f"{i:2d} {sym:2s} {x:8.3f} {y:8.3f} {z:8.3f}")
|
|
|
```
|
|
|
|
|
|
### Notes on 3D coordinates
|
|
|
|
|
|
* We generate a single low-energy conformer using RDKit ETKDG embedding + UFF optimization.
|
|
|
* Coordinates are in Ångström.
|
|
|
* These coordinates are not guaranteed to match the experimental NMR conformer in solvent; they are intended for featurization (message passing models, geometry-aware models, etc.), not quantum-accurate geometry.
|
|
|
|
|
|
---
|
|
|
|
|
|
## Downstream Benchmark Tasks
|
|
|
|
|
|
This benchmark suite evaluates AI models on multiple spectroscopy-related prediction tasks. Each task reflects a distinct molecular reasoning aspect — from direct spectrum regression to property and toxicity prediction.
|
|
|
|
|
|
### 1. Spectral Prediction
|
|
|
|
|
|
| **Method / Paper Title** | **Model Type / Approach** | **Metric(s)** | **Model Size** | **Notes** |
|
|
|
| ------------------------ | ------------------------- | ------------- | -------------- | --------- |
|
|
|
| x | x |x | x | x |
|
|
|
|
|
|
### 2. Structure Prediction (Inverse NMR)
|
|
|
|
|
|
| **Method / Paper Title** | **Model Type / Approach** | **Metric(s)** | **Model Size** | **Notes** |
|
|
|
| ------------------------ | ------------------------- | ------------- | -------------- | --------- |
|
|
|
| x | x |x | x | x |
|
|
|
### 3. Molecular Fingerprint Prediction (Spec2FP)
|
|
|
|
|
|
| **Method / Paper Title** | **Model Type / Approach** | **Metric(s)** | **Model Size** | **Notes** |
|
|
|
| ------------------------ | ------------------------- | ------------- | -------------- | --------- |
|
|
|
| x | x |x | x | x |
|
|
|
### 4. Functional Group Classification (Spec2Func)
|
|
|
|
|
|
| **Method / Paper Title** | **Model Type / Approach** | **Metric(s)** | **Model Size** | **Notes** |
|
|
|
| ------------------------ | ------------------------- | ------------- | -------------- | --------- |
|
|
|
| x | x |x | x | x |
|
|
|
### 5. Molecular Toxicity Prediction (Spec2Tox / ADMET)
|
|
|
|
|
|
| **Method / Paper Title** | **Model Type / Approach** | **Metric(s)** | **Model Size** | **Notes** |
|
|
|
| ------------------------ | ------------------------- | ------------- | -------------- | --------- |
|
|
|
| x | x |x | x | x |
|
|
|
|
|
|
---
|
|
|
|