| """Mímir Core v1 dataset.""" | |
| import gzip | |
| import json | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| _DESCRIPTION = """\\nMímir Core v1.""" | |
| _CITATION = """ | |
| """ | |
| _URL = "https://github.com/NbAiLab/mimir-data" | |
| _DATA_URL = "https://huggingface.co/datasets/mimir-project/mimir-core/resolve/main/data/{split_suffix}-{segment}-{index:04d}-of-{n_shards:04d}.json" | |
| _N_SHARDS_PER_SPLIT = { | |
| "bad": {"train": 6, "validation": 1}, | |
| "medium": {"train": 21, "validation": 1}, | |
| "good": {"train": 7, "validation": 1}, | |
| } | |
| _SEGMENTS = ("bad", "medium", "good") | |
| class MimirCoreConfig(datasets.BuilderConfig): | |
| """BuilderConfig for MimirCore.""" | |
| def __init__(self, name=None, *args, **kwargs): | |
| """BuilderConfig for MimirCore. | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| if name is None: | |
| name = "default" | |
| elif name not in _SEGMENTS: | |
| raise ValueError(f"Invalid segment option '{name}'. Options are {str(_SEGMENTS)}.") | |
| self.name = name | |
| super().__init__( | |
| *args, | |
| name=name, | |
| **kwargs, | |
| ) | |
| class MimirCore(datasets.GeneratorBasedBuilder): | |
| """Mimir Core v1.""" | |
| BUILDER_CONFIGS = [MimirCoreConfig()] + [MimirCoreConfig(segment) for segment in _SEGMENTS] | |
| BUILDER_CONFIG_CLASS = MimirCoreConfig | |
| DEFAULT_CONFIG_NAME = "default" | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "doc_type": datasets.Value("string"), | |
| "publish_year": datasets.Value("int32"), | |
| "lang_fasttext": datasets.Value("string"), | |
| "lang_fasttext_conf": datasets.Value("string"), | |
| "text": datasets.Value("string"), | |
| "perplexity": datasets.Value("float"), | |
| "perplexity_model": datasets.Value("string"), | |
| "harmful_pp": datasets.Value("float"), | |
| "segment": datasets.Value("string"), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage=_URL, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| if self.config.name != "default": | |
| segments = [self.config.name] | |
| else: | |
| segments = _SEGMENTS | |
| data_urls = {} | |
| for split in ["train", "validation"]: | |
| data_urls[split] = [] | |
| for segment in segments: | |
| data_urls[split] += [ | |
| _DATA_URL.format( | |
| split_suffix=split, | |
| segment=segment, | |
| index=index, | |
| n_shards=_N_SHARDS_PER_SPLIT[segment][split], | |
| ) | |
| for index in range(1, _N_SHARDS_PER_SPLIT[segment][split] + 1) | |
| ] | |
| train_downloaded_files = dl_manager.download(data_urls["train"]) | |
| validation_downloaded_files = dl_manager.download(data_urls["validation"]) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files} | |
| ), | |
| ] | |
| def _generate_examples(self, filepaths): | |
| """This function returns the examples in the raw (text) form by iterating on all the files.""" | |
| id_ = 0 | |
| for filepath in filepaths: | |
| logger.info("generating examples from = %s", filepath) | |
| with open(filepath, "rb") as b, gzip.open(b, "rt", encoding="utf-8") as f: | |
| for line in f: | |
| if line.strip(): | |
| example = json.loads(line) | |
| yield id_, example | |
| id_ += 1 | |