feat: process home value forecasts into a single csv
Browse files- .gitignore +0 -0
- .vscode/settings.json +3 -2
- process_home_value_forecasts.ipynb +800 -0
- processed/home_value_forecasts/final.csv +0 -0
.gitignore
ADDED
|
File without changes
|
.vscode/settings.json
CHANGED
|
@@ -2,6 +2,7 @@
|
|
| 2 |
"[python]": {
|
| 3 |
"editor.defaultFormatter": "ms-python.black-formatter",
|
| 4 |
"editor.formatOnSave": true
|
| 5 |
-
}
|
|
|
|
|
|
|
| 6 |
}
|
| 7 |
-
|
|
|
|
| 2 |
"[python]": {
|
| 3 |
"editor.defaultFormatter": "ms-python.black-formatter",
|
| 4 |
"editor.formatOnSave": true
|
| 5 |
+
},
|
| 6 |
+
"python.analysis.autoImportCompletions": true,
|
| 7 |
+
"python.analysis.typeCheckingMode": "basic"
|
| 8 |
}
|
|
|
process_home_value_forecasts.ipynb
ADDED
|
@@ -0,0 +1,800 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 22,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import pandas as pd\n",
|
| 10 |
+
"import os"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "code",
|
| 15 |
+
"execution_count": 23,
|
| 16 |
+
"metadata": {},
|
| 17 |
+
"outputs": [],
|
| 18 |
+
"source": [
|
| 19 |
+
"DATA_DIR = 'data/'\n",
|
| 20 |
+
"PROCESSED_DIR = 'processed/'\n",
|
| 21 |
+
"FACET_DIR = 'home_value_forecasts/'\n",
|
| 22 |
+
"FULL_DATA_DIR_PATH = DATA_DIR + FACET_DIR\n",
|
| 23 |
+
"FULL_PROCESSED_DIR_PATH = PROCESSED_DIR + FACET_DIR"
|
| 24 |
+
]
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"cell_type": "code",
|
| 28 |
+
"execution_count": 24,
|
| 29 |
+
"metadata": {},
|
| 30 |
+
"outputs": [
|
| 31 |
+
{
|
| 32 |
+
"name": "stdout",
|
| 33 |
+
"output_type": "stream",
|
| 34 |
+
"text": [
|
| 35 |
+
"processing Zip_zhvf_growth_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
| 36 |
+
"processing Metro_zhvf_growth_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
| 37 |
+
"processing Zip_zhvf_growth_uc_sfrcondo_tier_0.33_0.67_month.csv\n",
|
| 38 |
+
"processing Metro_zhvf_growth_uc_sfrcondo_tier_0.33_0.67_month.csv\n"
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"data": {
|
| 43 |
+
"text/html": [
|
| 44 |
+
"<div>\n",
|
| 45 |
+
"<style scoped>\n",
|
| 46 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 47 |
+
" vertical-align: middle;\n",
|
| 48 |
+
" }\n",
|
| 49 |
+
"\n",
|
| 50 |
+
" .dataframe tbody tr th {\n",
|
| 51 |
+
" vertical-align: top;\n",
|
| 52 |
+
" }\n",
|
| 53 |
+
"\n",
|
| 54 |
+
" .dataframe thead th {\n",
|
| 55 |
+
" text-align: right;\n",
|
| 56 |
+
" }\n",
|
| 57 |
+
"</style>\n",
|
| 58 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 59 |
+
" <thead>\n",
|
| 60 |
+
" <tr style=\"text-align: right;\">\n",
|
| 61 |
+
" <th></th>\n",
|
| 62 |
+
" <th>RegionID</th>\n",
|
| 63 |
+
" <th>SizeRank</th>\n",
|
| 64 |
+
" <th>RegionName</th>\n",
|
| 65 |
+
" <th>RegionType</th>\n",
|
| 66 |
+
" <th>StateName</th>\n",
|
| 67 |
+
" <th>BaseDate</th>\n",
|
| 68 |
+
" <th>Month Over Month % (Smoothed)</th>\n",
|
| 69 |
+
" <th>Quarter Over Quarter % (Smoothed)</th>\n",
|
| 70 |
+
" <th>Year Over Year % (Smoothed)</th>\n",
|
| 71 |
+
" <th>Month Over Month % (Raw)</th>\n",
|
| 72 |
+
" <th>Quarter Over Quarter % (Raw)</th>\n",
|
| 73 |
+
" <th>Year Over Year % (Raw)</th>\n",
|
| 74 |
+
" <th>State</th>\n",
|
| 75 |
+
" <th>City</th>\n",
|
| 76 |
+
" <th>Metro</th>\n",
|
| 77 |
+
" <th>CountyName</th>\n",
|
| 78 |
+
" </tr>\n",
|
| 79 |
+
" </thead>\n",
|
| 80 |
+
" <tbody>\n",
|
| 81 |
+
" <tr>\n",
|
| 82 |
+
" <th>0</th>\n",
|
| 83 |
+
" <td>102001</td>\n",
|
| 84 |
+
" <td>0</td>\n",
|
| 85 |
+
" <td>United States</td>\n",
|
| 86 |
+
" <td>country</td>\n",
|
| 87 |
+
" <td>NaN</td>\n",
|
| 88 |
+
" <td>2023-12-31</td>\n",
|
| 89 |
+
" <td>0.1</td>\n",
|
| 90 |
+
" <td>0.4</td>\n",
|
| 91 |
+
" <td>3.5</td>\n",
|
| 92 |
+
" <td>-0.5</td>\n",
|
| 93 |
+
" <td>0.4</td>\n",
|
| 94 |
+
" <td>3.7</td>\n",
|
| 95 |
+
" <td>NaN</td>\n",
|
| 96 |
+
" <td>NaN</td>\n",
|
| 97 |
+
" <td>NaN</td>\n",
|
| 98 |
+
" <td>NaN</td>\n",
|
| 99 |
+
" </tr>\n",
|
| 100 |
+
" <tr>\n",
|
| 101 |
+
" <th>1</th>\n",
|
| 102 |
+
" <td>394913</td>\n",
|
| 103 |
+
" <td>1</td>\n",
|
| 104 |
+
" <td>New York, NY</td>\n",
|
| 105 |
+
" <td>msa</td>\n",
|
| 106 |
+
" <td>NY</td>\n",
|
| 107 |
+
" <td>2023-12-31</td>\n",
|
| 108 |
+
" <td>0.2</td>\n",
|
| 109 |
+
" <td>0.2</td>\n",
|
| 110 |
+
" <td>1.0</td>\n",
|
| 111 |
+
" <td>-0.7</td>\n",
|
| 112 |
+
" <td>-0.9</td>\n",
|
| 113 |
+
" <td>0.6</td>\n",
|
| 114 |
+
" <td>NaN</td>\n",
|
| 115 |
+
" <td>NaN</td>\n",
|
| 116 |
+
" <td>NaN</td>\n",
|
| 117 |
+
" <td>NaN</td>\n",
|
| 118 |
+
" </tr>\n",
|
| 119 |
+
" <tr>\n",
|
| 120 |
+
" <th>2</th>\n",
|
| 121 |
+
" <td>753899</td>\n",
|
| 122 |
+
" <td>2</td>\n",
|
| 123 |
+
" <td>Los Angeles, CA</td>\n",
|
| 124 |
+
" <td>msa</td>\n",
|
| 125 |
+
" <td>CA</td>\n",
|
| 126 |
+
" <td>2023-12-31</td>\n",
|
| 127 |
+
" <td>-0.1</td>\n",
|
| 128 |
+
" <td>-1.8</td>\n",
|
| 129 |
+
" <td>0.7</td>\n",
|
| 130 |
+
" <td>-0.6</td>\n",
|
| 131 |
+
" <td>0.8</td>\n",
|
| 132 |
+
" <td>1.4</td>\n",
|
| 133 |
+
" <td>NaN</td>\n",
|
| 134 |
+
" <td>NaN</td>\n",
|
| 135 |
+
" <td>NaN</td>\n",
|
| 136 |
+
" <td>NaN</td>\n",
|
| 137 |
+
" </tr>\n",
|
| 138 |
+
" <tr>\n",
|
| 139 |
+
" <th>3</th>\n",
|
| 140 |
+
" <td>394463</td>\n",
|
| 141 |
+
" <td>3</td>\n",
|
| 142 |
+
" <td>Chicago, IL</td>\n",
|
| 143 |
+
" <td>msa</td>\n",
|
| 144 |
+
" <td>IL</td>\n",
|
| 145 |
+
" <td>2023-12-31</td>\n",
|
| 146 |
+
" <td>0.1</td>\n",
|
| 147 |
+
" <td>0.4</td>\n",
|
| 148 |
+
" <td>1.6</td>\n",
|
| 149 |
+
" <td>-0.8</td>\n",
|
| 150 |
+
" <td>-0.2</td>\n",
|
| 151 |
+
" <td>1.4</td>\n",
|
| 152 |
+
" <td>NaN</td>\n",
|
| 153 |
+
" <td>NaN</td>\n",
|
| 154 |
+
" <td>NaN</td>\n",
|
| 155 |
+
" <td>NaN</td>\n",
|
| 156 |
+
" </tr>\n",
|
| 157 |
+
" <tr>\n",
|
| 158 |
+
" <th>4</th>\n",
|
| 159 |
+
" <td>394514</td>\n",
|
| 160 |
+
" <td>4</td>\n",
|
| 161 |
+
" <td>Dallas, TX</td>\n",
|
| 162 |
+
" <td>msa</td>\n",
|
| 163 |
+
" <td>TX</td>\n",
|
| 164 |
+
" <td>2023-12-31</td>\n",
|
| 165 |
+
" <td>-0.1</td>\n",
|
| 166 |
+
" <td>0.0</td>\n",
|
| 167 |
+
" <td>3.2</td>\n",
|
| 168 |
+
" <td>-0.6</td>\n",
|
| 169 |
+
" <td>0.9</td>\n",
|
| 170 |
+
" <td>3.6</td>\n",
|
| 171 |
+
" <td>NaN</td>\n",
|
| 172 |
+
" <td>NaN</td>\n",
|
| 173 |
+
" <td>NaN</td>\n",
|
| 174 |
+
" <td>NaN</td>\n",
|
| 175 |
+
" </tr>\n",
|
| 176 |
+
" <tr>\n",
|
| 177 |
+
" <th>...</th>\n",
|
| 178 |
+
" <td>...</td>\n",
|
| 179 |
+
" <td>...</td>\n",
|
| 180 |
+
" <td>...</td>\n",
|
| 181 |
+
" <td>...</td>\n",
|
| 182 |
+
" <td>...</td>\n",
|
| 183 |
+
" <td>...</td>\n",
|
| 184 |
+
" <td>...</td>\n",
|
| 185 |
+
" <td>...</td>\n",
|
| 186 |
+
" <td>...</td>\n",
|
| 187 |
+
" <td>...</td>\n",
|
| 188 |
+
" <td>...</td>\n",
|
| 189 |
+
" <td>...</td>\n",
|
| 190 |
+
" <td>...</td>\n",
|
| 191 |
+
" <td>...</td>\n",
|
| 192 |
+
" <td>...</td>\n",
|
| 193 |
+
" <td>...</td>\n",
|
| 194 |
+
" </tr>\n",
|
| 195 |
+
" <tr>\n",
|
| 196 |
+
" <th>20162</th>\n",
|
| 197 |
+
" <td>82097</td>\n",
|
| 198 |
+
" <td>39992</td>\n",
|
| 199 |
+
" <td>55087</td>\n",
|
| 200 |
+
" <td>zip</td>\n",
|
| 201 |
+
" <td>MN</td>\n",
|
| 202 |
+
" <td>2023-12-31</td>\n",
|
| 203 |
+
" <td>0.1</td>\n",
|
| 204 |
+
" <td>0.7</td>\n",
|
| 205 |
+
" <td>1.8</td>\n",
|
| 206 |
+
" <td>-0.9</td>\n",
|
| 207 |
+
" <td>-0.2</td>\n",
|
| 208 |
+
" <td>2.6</td>\n",
|
| 209 |
+
" <td>MN</td>\n",
|
| 210 |
+
" <td>Warsaw</td>\n",
|
| 211 |
+
" <td>Faribault-Northfield, MN</td>\n",
|
| 212 |
+
" <td>Rice County</td>\n",
|
| 213 |
+
" </tr>\n",
|
| 214 |
+
" <tr>\n",
|
| 215 |
+
" <th>20163</th>\n",
|
| 216 |
+
" <td>85325</td>\n",
|
| 217 |
+
" <td>39992</td>\n",
|
| 218 |
+
" <td>62093</td>\n",
|
| 219 |
+
" <td>zip</td>\n",
|
| 220 |
+
" <td>IL</td>\n",
|
| 221 |
+
" <td>2023-12-31</td>\n",
|
| 222 |
+
" <td>0.9</td>\n",
|
| 223 |
+
" <td>0.4</td>\n",
|
| 224 |
+
" <td>3.7</td>\n",
|
| 225 |
+
" <td>-0.7</td>\n",
|
| 226 |
+
" <td>0.4</td>\n",
|
| 227 |
+
" <td>2.3</td>\n",
|
| 228 |
+
" <td>IL</td>\n",
|
| 229 |
+
" <td>NaN</td>\n",
|
| 230 |
+
" <td>St. Louis, MO-IL</td>\n",
|
| 231 |
+
" <td>Macoupin County</td>\n",
|
| 232 |
+
" </tr>\n",
|
| 233 |
+
" <tr>\n",
|
| 234 |
+
" <th>20164</th>\n",
|
| 235 |
+
" <td>92085</td>\n",
|
| 236 |
+
" <td>39992</td>\n",
|
| 237 |
+
" <td>77661</td>\n",
|
| 238 |
+
" <td>zip</td>\n",
|
| 239 |
+
" <td>TX</td>\n",
|
| 240 |
+
" <td>2023-12-31</td>\n",
|
| 241 |
+
" <td>-0.5</td>\n",
|
| 242 |
+
" <td>0.3</td>\n",
|
| 243 |
+
" <td>-0.6</td>\n",
|
| 244 |
+
" <td>-0.4</td>\n",
|
| 245 |
+
" <td>0.0</td>\n",
|
| 246 |
+
" <td>1.2</td>\n",
|
| 247 |
+
" <td>TX</td>\n",
|
| 248 |
+
" <td>NaN</td>\n",
|
| 249 |
+
" <td>Houston-The Woodlands-Sugar Land, TX</td>\n",
|
| 250 |
+
" <td>Chambers County</td>\n",
|
| 251 |
+
" </tr>\n",
|
| 252 |
+
" <tr>\n",
|
| 253 |
+
" <th>20165</th>\n",
|
| 254 |
+
" <td>92811</td>\n",
|
| 255 |
+
" <td>39992</td>\n",
|
| 256 |
+
" <td>79078</td>\n",
|
| 257 |
+
" <td>zip</td>\n",
|
| 258 |
+
" <td>TX</td>\n",
|
| 259 |
+
" <td>2023-12-31</td>\n",
|
| 260 |
+
" <td>-1.2</td>\n",
|
| 261 |
+
" <td>-1.1</td>\n",
|
| 262 |
+
" <td>-3.1</td>\n",
|
| 263 |
+
" <td>-1.7</td>\n",
|
| 264 |
+
" <td>-2.6</td>\n",
|
| 265 |
+
" <td>-1.9</td>\n",
|
| 266 |
+
" <td>TX</td>\n",
|
| 267 |
+
" <td>NaN</td>\n",
|
| 268 |
+
" <td>Borger, TX</td>\n",
|
| 269 |
+
" <td>Hutchinson County</td>\n",
|
| 270 |
+
" </tr>\n",
|
| 271 |
+
" <tr>\n",
|
| 272 |
+
" <th>20166</th>\n",
|
| 273 |
+
" <td>98183</td>\n",
|
| 274 |
+
" <td>39992</td>\n",
|
| 275 |
+
" <td>95419</td>\n",
|
| 276 |
+
" <td>zip</td>\n",
|
| 277 |
+
" <td>CA</td>\n",
|
| 278 |
+
" <td>2023-12-31</td>\n",
|
| 279 |
+
" <td>-0.5</td>\n",
|
| 280 |
+
" <td>-0.2</td>\n",
|
| 281 |
+
" <td>0.0</td>\n",
|
| 282 |
+
" <td>-0.5</td>\n",
|
| 283 |
+
" <td>0.6</td>\n",
|
| 284 |
+
" <td>-0.4</td>\n",
|
| 285 |
+
" <td>CA</td>\n",
|
| 286 |
+
" <td>Camp Meeker</td>\n",
|
| 287 |
+
" <td>Santa Rosa-Petaluma, CA</td>\n",
|
| 288 |
+
" <td>Sonoma County</td>\n",
|
| 289 |
+
" </tr>\n",
|
| 290 |
+
" </tbody>\n",
|
| 291 |
+
"</table>\n",
|
| 292 |
+
"<p>21062 rows × 16 columns</p>\n",
|
| 293 |
+
"</div>"
|
| 294 |
+
],
|
| 295 |
+
"text/plain": [
|
| 296 |
+
" RegionID SizeRank RegionName RegionType StateName BaseDate \\\n",
|
| 297 |
+
"0 102001 0 United States country NaN 2023-12-31 \n",
|
| 298 |
+
"1 394913 1 New York, NY msa NY 2023-12-31 \n",
|
| 299 |
+
"2 753899 2 Los Angeles, CA msa CA 2023-12-31 \n",
|
| 300 |
+
"3 394463 3 Chicago, IL msa IL 2023-12-31 \n",
|
| 301 |
+
"4 394514 4 Dallas, TX msa TX 2023-12-31 \n",
|
| 302 |
+
"... ... ... ... ... ... ... \n",
|
| 303 |
+
"20162 82097 39992 55087 zip MN 2023-12-31 \n",
|
| 304 |
+
"20163 85325 39992 62093 zip IL 2023-12-31 \n",
|
| 305 |
+
"20164 92085 39992 77661 zip TX 2023-12-31 \n",
|
| 306 |
+
"20165 92811 39992 79078 zip TX 2023-12-31 \n",
|
| 307 |
+
"20166 98183 39992 95419 zip CA 2023-12-31 \n",
|
| 308 |
+
"\n",
|
| 309 |
+
" Month Over Month % (Smoothed) Quarter Over Quarter % (Smoothed) \\\n",
|
| 310 |
+
"0 0.1 0.4 \n",
|
| 311 |
+
"1 0.2 0.2 \n",
|
| 312 |
+
"2 -0.1 -1.8 \n",
|
| 313 |
+
"3 0.1 0.4 \n",
|
| 314 |
+
"4 -0.1 0.0 \n",
|
| 315 |
+
"... ... ... \n",
|
| 316 |
+
"20162 0.1 0.7 \n",
|
| 317 |
+
"20163 0.9 0.4 \n",
|
| 318 |
+
"20164 -0.5 0.3 \n",
|
| 319 |
+
"20165 -1.2 -1.1 \n",
|
| 320 |
+
"20166 -0.5 -0.2 \n",
|
| 321 |
+
"\n",
|
| 322 |
+
" Year Over Year % (Smoothed) Month Over Month % (Raw) \\\n",
|
| 323 |
+
"0 3.5 -0.5 \n",
|
| 324 |
+
"1 1.0 -0.7 \n",
|
| 325 |
+
"2 0.7 -0.6 \n",
|
| 326 |
+
"3 1.6 -0.8 \n",
|
| 327 |
+
"4 3.2 -0.6 \n",
|
| 328 |
+
"... ... ... \n",
|
| 329 |
+
"20162 1.8 -0.9 \n",
|
| 330 |
+
"20163 3.7 -0.7 \n",
|
| 331 |
+
"20164 -0.6 -0.4 \n",
|
| 332 |
+
"20165 -3.1 -1.7 \n",
|
| 333 |
+
"20166 0.0 -0.5 \n",
|
| 334 |
+
"\n",
|
| 335 |
+
" Quarter Over Quarter % (Raw) Year Over Year % (Raw) State \\\n",
|
| 336 |
+
"0 0.4 3.7 NaN \n",
|
| 337 |
+
"1 -0.9 0.6 NaN \n",
|
| 338 |
+
"2 0.8 1.4 NaN \n",
|
| 339 |
+
"3 -0.2 1.4 NaN \n",
|
| 340 |
+
"4 0.9 3.6 NaN \n",
|
| 341 |
+
"... ... ... ... \n",
|
| 342 |
+
"20162 -0.2 2.6 MN \n",
|
| 343 |
+
"20163 0.4 2.3 IL \n",
|
| 344 |
+
"20164 0.0 1.2 TX \n",
|
| 345 |
+
"20165 -2.6 -1.9 TX \n",
|
| 346 |
+
"20166 0.6 -0.4 CA \n",
|
| 347 |
+
"\n",
|
| 348 |
+
" City Metro CountyName \n",
|
| 349 |
+
"0 NaN NaN NaN \n",
|
| 350 |
+
"1 NaN NaN NaN \n",
|
| 351 |
+
"2 NaN NaN NaN \n",
|
| 352 |
+
"3 NaN NaN NaN \n",
|
| 353 |
+
"4 NaN NaN NaN \n",
|
| 354 |
+
"... ... ... ... \n",
|
| 355 |
+
"20162 Warsaw Faribault-Northfield, MN Rice County \n",
|
| 356 |
+
"20163 NaN St. Louis, MO-IL Macoupin County \n",
|
| 357 |
+
"20164 NaN Houston-The Woodlands-Sugar Land, TX Chambers County \n",
|
| 358 |
+
"20165 NaN Borger, TX Hutchinson County \n",
|
| 359 |
+
"20166 Camp Meeker Santa Rosa-Petaluma, CA Sonoma County \n",
|
| 360 |
+
"\n",
|
| 361 |
+
"[21062 rows x 16 columns]"
|
| 362 |
+
]
|
| 363 |
+
},
|
| 364 |
+
"execution_count": 24,
|
| 365 |
+
"metadata": {},
|
| 366 |
+
"output_type": "execute_result"
|
| 367 |
+
}
|
| 368 |
+
],
|
| 369 |
+
"source": [
|
| 370 |
+
"metro_data_frames = []\n",
|
| 371 |
+
"zip_data_frames = []\n",
|
| 372 |
+
"for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
|
| 373 |
+
" if filename.endswith('.csv'):\n",
|
| 374 |
+
" print('processing ' + filename)\n",
|
| 375 |
+
" cur_df = pd.read_csv(FULL_DATA_DIR_PATH + filename)\n",
|
| 376 |
+
" \n",
|
| 377 |
+
" cols = ['Month Over Month %', 'Quarter Over Quarter %', 'Year Over Year %']\n",
|
| 378 |
+
" if (filename.endswith('sm_sa_month.csv')):\n",
|
| 379 |
+
" # print('Smoothed')\n",
|
| 380 |
+
" cur_df.columns = list(cur_df.columns[:-3]) + [x + ' (Smoothed)' for x in cols]\n",
|
| 381 |
+
" else:\n",
|
| 382 |
+
" # print('Raw')\n",
|
| 383 |
+
" cur_df.columns = list(cur_df.columns[:-3]) + [x + ' (Raw)' for x in cols]\n",
|
| 384 |
+
" \n",
|
| 385 |
+
" if (filename.startswith('Metro')):\n",
|
| 386 |
+
" # print('Metro')\n",
|
| 387 |
+
" metro_data_frames.append(cur_df)\n",
|
| 388 |
+
"\n",
|
| 389 |
+
" elif (filename.startswith('Zip')):\n",
|
| 390 |
+
" # print('Zip')\n",
|
| 391 |
+
" zip_data_frames.append(cur_df)\n",
|
| 392 |
+
"\n",
|
| 393 |
+
"def get_combined_df(data_frames):\n",
|
| 394 |
+
" combined_df = None\n",
|
| 395 |
+
" if len(data_frames) > 1:\n",
|
| 396 |
+
" # iterate over dataframes and merge them\n",
|
| 397 |
+
" final_df = data_frames[0]\n",
|
| 398 |
+
" for i in range(1, len(data_frames)):\n",
|
| 399 |
+
" cur_df = data_frames[i]\n",
|
| 400 |
+
" cols = list(cur_df.columns[-3:])\n",
|
| 401 |
+
" cols.append('RegionID')\n",
|
| 402 |
+
" combined_df = pd.merge(final_df, cur_df[cols], on='RegionID')\n",
|
| 403 |
+
" elif len(data_frames) == 1:\n",
|
| 404 |
+
" combined_df = data_frames[0]\n",
|
| 405 |
+
" \n",
|
| 406 |
+
" \n",
|
| 407 |
+
" return(combined_df)\n",
|
| 408 |
+
"\n",
|
| 409 |
+
"combined_metro_dfs = get_combined_df(metro_data_frames)\n",
|
| 410 |
+
"combined_zip_dfs = get_combined_df(zip_data_frames)\n",
|
| 411 |
+
"\n",
|
| 412 |
+
"combined_df = pd.concat([combined_metro_dfs, combined_zip_dfs])\n",
|
| 413 |
+
"combined_df"
|
| 414 |
+
]
|
| 415 |
+
},
|
| 416 |
+
{
|
| 417 |
+
"cell_type": "code",
|
| 418 |
+
"execution_count": 34,
|
| 419 |
+
"metadata": {},
|
| 420 |
+
"outputs": [
|
| 421 |
+
{
|
| 422 |
+
"data": {
|
| 423 |
+
"text/html": [
|
| 424 |
+
"<div>\n",
|
| 425 |
+
"<style scoped>\n",
|
| 426 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 427 |
+
" vertical-align: middle;\n",
|
| 428 |
+
" }\n",
|
| 429 |
+
"\n",
|
| 430 |
+
" .dataframe tbody tr th {\n",
|
| 431 |
+
" vertical-align: top;\n",
|
| 432 |
+
" }\n",
|
| 433 |
+
"\n",
|
| 434 |
+
" .dataframe thead th {\n",
|
| 435 |
+
" text-align: right;\n",
|
| 436 |
+
" }\n",
|
| 437 |
+
"</style>\n",
|
| 438 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 439 |
+
" <thead>\n",
|
| 440 |
+
" <tr style=\"text-align: right;\">\n",
|
| 441 |
+
" <th></th>\n",
|
| 442 |
+
" <th>RegionID</th>\n",
|
| 443 |
+
" <th>RegionName</th>\n",
|
| 444 |
+
" <th>RegionType</th>\n",
|
| 445 |
+
" <th>SizeRank</th>\n",
|
| 446 |
+
" <th>State</th>\n",
|
| 447 |
+
" <th>City</th>\n",
|
| 448 |
+
" <th>Metro</th>\n",
|
| 449 |
+
" <th>CountyName</th>\n",
|
| 450 |
+
" <th>BaseDate</th>\n",
|
| 451 |
+
" <th>Month Over Month % (Smoothed)</th>\n",
|
| 452 |
+
" <th>Quarter Over Quarter % (Smoothed)</th>\n",
|
| 453 |
+
" <th>Year Over Year % (Smoothed)</th>\n",
|
| 454 |
+
" <th>Month Over Month % (Raw)</th>\n",
|
| 455 |
+
" <th>Quarter Over Quarter % (Raw)</th>\n",
|
| 456 |
+
" <th>Year Over Year % (Raw)</th>\n",
|
| 457 |
+
" </tr>\n",
|
| 458 |
+
" </thead>\n",
|
| 459 |
+
" <tbody>\n",
|
| 460 |
+
" <tr>\n",
|
| 461 |
+
" <th>0</th>\n",
|
| 462 |
+
" <td>102001</td>\n",
|
| 463 |
+
" <td>United States</td>\n",
|
| 464 |
+
" <td>country</td>\n",
|
| 465 |
+
" <td>0</td>\n",
|
| 466 |
+
" <td>NaN</td>\n",
|
| 467 |
+
" <td>NaN</td>\n",
|
| 468 |
+
" <td>NaN</td>\n",
|
| 469 |
+
" <td>NaN</td>\n",
|
| 470 |
+
" <td>2023-12-31</td>\n",
|
| 471 |
+
" <td>0.1</td>\n",
|
| 472 |
+
" <td>0.4</td>\n",
|
| 473 |
+
" <td>3.5</td>\n",
|
| 474 |
+
" <td>-0.5</td>\n",
|
| 475 |
+
" <td>0.4</td>\n",
|
| 476 |
+
" <td>3.7</td>\n",
|
| 477 |
+
" </tr>\n",
|
| 478 |
+
" <tr>\n",
|
| 479 |
+
" <th>1</th>\n",
|
| 480 |
+
" <td>394913</td>\n",
|
| 481 |
+
" <td>New York, NY</td>\n",
|
| 482 |
+
" <td>msa</td>\n",
|
| 483 |
+
" <td>1</td>\n",
|
| 484 |
+
" <td>NY</td>\n",
|
| 485 |
+
" <td>New York</td>\n",
|
| 486 |
+
" <td>New York, NY</td>\n",
|
| 487 |
+
" <td>NaN</td>\n",
|
| 488 |
+
" <td>2023-12-31</td>\n",
|
| 489 |
+
" <td>0.2</td>\n",
|
| 490 |
+
" <td>0.2</td>\n",
|
| 491 |
+
" <td>1.0</td>\n",
|
| 492 |
+
" <td>-0.7</td>\n",
|
| 493 |
+
" <td>-0.9</td>\n",
|
| 494 |
+
" <td>0.6</td>\n",
|
| 495 |
+
" </tr>\n",
|
| 496 |
+
" <tr>\n",
|
| 497 |
+
" <th>2</th>\n",
|
| 498 |
+
" <td>753899</td>\n",
|
| 499 |
+
" <td>Los Angeles, CA</td>\n",
|
| 500 |
+
" <td>msa</td>\n",
|
| 501 |
+
" <td>2</td>\n",
|
| 502 |
+
" <td>CA</td>\n",
|
| 503 |
+
" <td>Los Angeles</td>\n",
|
| 504 |
+
" <td>Los Angeles, CA</td>\n",
|
| 505 |
+
" <td>NaN</td>\n",
|
| 506 |
+
" <td>2023-12-31</td>\n",
|
| 507 |
+
" <td>-0.1</td>\n",
|
| 508 |
+
" <td>-1.8</td>\n",
|
| 509 |
+
" <td>0.7</td>\n",
|
| 510 |
+
" <td>-0.6</td>\n",
|
| 511 |
+
" <td>0.8</td>\n",
|
| 512 |
+
" <td>1.4</td>\n",
|
| 513 |
+
" </tr>\n",
|
| 514 |
+
" <tr>\n",
|
| 515 |
+
" <th>3</th>\n",
|
| 516 |
+
" <td>394463</td>\n",
|
| 517 |
+
" <td>Chicago, IL</td>\n",
|
| 518 |
+
" <td>msa</td>\n",
|
| 519 |
+
" <td>3</td>\n",
|
| 520 |
+
" <td>IL</td>\n",
|
| 521 |
+
" <td>Chicago</td>\n",
|
| 522 |
+
" <td>Chicago, IL</td>\n",
|
| 523 |
+
" <td>NaN</td>\n",
|
| 524 |
+
" <td>2023-12-31</td>\n",
|
| 525 |
+
" <td>0.1</td>\n",
|
| 526 |
+
" <td>0.4</td>\n",
|
| 527 |
+
" <td>1.6</td>\n",
|
| 528 |
+
" <td>-0.8</td>\n",
|
| 529 |
+
" <td>-0.2</td>\n",
|
| 530 |
+
" <td>1.4</td>\n",
|
| 531 |
+
" </tr>\n",
|
| 532 |
+
" <tr>\n",
|
| 533 |
+
" <th>4</th>\n",
|
| 534 |
+
" <td>394514</td>\n",
|
| 535 |
+
" <td>Dallas, TX</td>\n",
|
| 536 |
+
" <td>msa</td>\n",
|
| 537 |
+
" <td>4</td>\n",
|
| 538 |
+
" <td>TX</td>\n",
|
| 539 |
+
" <td>Dallas</td>\n",
|
| 540 |
+
" <td>Dallas, TX</td>\n",
|
| 541 |
+
" <td>NaN</td>\n",
|
| 542 |
+
" <td>2023-12-31</td>\n",
|
| 543 |
+
" <td>-0.1</td>\n",
|
| 544 |
+
" <td>0.0</td>\n",
|
| 545 |
+
" <td>3.2</td>\n",
|
| 546 |
+
" <td>-0.6</td>\n",
|
| 547 |
+
" <td>0.9</td>\n",
|
| 548 |
+
" <td>3.6</td>\n",
|
| 549 |
+
" </tr>\n",
|
| 550 |
+
" <tr>\n",
|
| 551 |
+
" <th>...</th>\n",
|
| 552 |
+
" <td>...</td>\n",
|
| 553 |
+
" <td>...</td>\n",
|
| 554 |
+
" <td>...</td>\n",
|
| 555 |
+
" <td>...</td>\n",
|
| 556 |
+
" <td>...</td>\n",
|
| 557 |
+
" <td>...</td>\n",
|
| 558 |
+
" <td>...</td>\n",
|
| 559 |
+
" <td>...</td>\n",
|
| 560 |
+
" <td>...</td>\n",
|
| 561 |
+
" <td>...</td>\n",
|
| 562 |
+
" <td>...</td>\n",
|
| 563 |
+
" <td>...</td>\n",
|
| 564 |
+
" <td>...</td>\n",
|
| 565 |
+
" <td>...</td>\n",
|
| 566 |
+
" <td>...</td>\n",
|
| 567 |
+
" </tr>\n",
|
| 568 |
+
" <tr>\n",
|
| 569 |
+
" <th>20162</th>\n",
|
| 570 |
+
" <td>82097</td>\n",
|
| 571 |
+
" <td>55087</td>\n",
|
| 572 |
+
" <td>zip</td>\n",
|
| 573 |
+
" <td>39992</td>\n",
|
| 574 |
+
" <td>MN</td>\n",
|
| 575 |
+
" <td>Warsaw</td>\n",
|
| 576 |
+
" <td>Faribault-Northfield, MN</td>\n",
|
| 577 |
+
" <td>Rice County</td>\n",
|
| 578 |
+
" <td>2023-12-31</td>\n",
|
| 579 |
+
" <td>0.1</td>\n",
|
| 580 |
+
" <td>0.7</td>\n",
|
| 581 |
+
" <td>1.8</td>\n",
|
| 582 |
+
" <td>-0.9</td>\n",
|
| 583 |
+
" <td>-0.2</td>\n",
|
| 584 |
+
" <td>2.6</td>\n",
|
| 585 |
+
" </tr>\n",
|
| 586 |
+
" <tr>\n",
|
| 587 |
+
" <th>20163</th>\n",
|
| 588 |
+
" <td>85325</td>\n",
|
| 589 |
+
" <td>62093</td>\n",
|
| 590 |
+
" <td>zip</td>\n",
|
| 591 |
+
" <td>39992</td>\n",
|
| 592 |
+
" <td>IL</td>\n",
|
| 593 |
+
" <td>NaN</td>\n",
|
| 594 |
+
" <td>St. Louis, MO-IL</td>\n",
|
| 595 |
+
" <td>Macoupin County</td>\n",
|
| 596 |
+
" <td>2023-12-31</td>\n",
|
| 597 |
+
" <td>0.9</td>\n",
|
| 598 |
+
" <td>0.4</td>\n",
|
| 599 |
+
" <td>3.7</td>\n",
|
| 600 |
+
" <td>-0.7</td>\n",
|
| 601 |
+
" <td>0.4</td>\n",
|
| 602 |
+
" <td>2.3</td>\n",
|
| 603 |
+
" </tr>\n",
|
| 604 |
+
" <tr>\n",
|
| 605 |
+
" <th>20164</th>\n",
|
| 606 |
+
" <td>92085</td>\n",
|
| 607 |
+
" <td>77661</td>\n",
|
| 608 |
+
" <td>zip</td>\n",
|
| 609 |
+
" <td>39992</td>\n",
|
| 610 |
+
" <td>TX</td>\n",
|
| 611 |
+
" <td>NaN</td>\n",
|
| 612 |
+
" <td>Houston-The Woodlands-Sugar Land, TX</td>\n",
|
| 613 |
+
" <td>Chambers County</td>\n",
|
| 614 |
+
" <td>2023-12-31</td>\n",
|
| 615 |
+
" <td>-0.5</td>\n",
|
| 616 |
+
" <td>0.3</td>\n",
|
| 617 |
+
" <td>-0.6</td>\n",
|
| 618 |
+
" <td>-0.4</td>\n",
|
| 619 |
+
" <td>0.0</td>\n",
|
| 620 |
+
" <td>1.2</td>\n",
|
| 621 |
+
" </tr>\n",
|
| 622 |
+
" <tr>\n",
|
| 623 |
+
" <th>20165</th>\n",
|
| 624 |
+
" <td>92811</td>\n",
|
| 625 |
+
" <td>79078</td>\n",
|
| 626 |
+
" <td>zip</td>\n",
|
| 627 |
+
" <td>39992</td>\n",
|
| 628 |
+
" <td>TX</td>\n",
|
| 629 |
+
" <td>NaN</td>\n",
|
| 630 |
+
" <td>Borger, TX</td>\n",
|
| 631 |
+
" <td>Hutchinson County</td>\n",
|
| 632 |
+
" <td>2023-12-31</td>\n",
|
| 633 |
+
" <td>-1.2</td>\n",
|
| 634 |
+
" <td>-1.1</td>\n",
|
| 635 |
+
" <td>-3.1</td>\n",
|
| 636 |
+
" <td>-1.7</td>\n",
|
| 637 |
+
" <td>-2.6</td>\n",
|
| 638 |
+
" <td>-1.9</td>\n",
|
| 639 |
+
" </tr>\n",
|
| 640 |
+
" <tr>\n",
|
| 641 |
+
" <th>20166</th>\n",
|
| 642 |
+
" <td>98183</td>\n",
|
| 643 |
+
" <td>95419</td>\n",
|
| 644 |
+
" <td>zip</td>\n",
|
| 645 |
+
" <td>39992</td>\n",
|
| 646 |
+
" <td>CA</td>\n",
|
| 647 |
+
" <td>Camp Meeker</td>\n",
|
| 648 |
+
" <td>Santa Rosa-Petaluma, CA</td>\n",
|
| 649 |
+
" <td>Sonoma County</td>\n",
|
| 650 |
+
" <td>2023-12-31</td>\n",
|
| 651 |
+
" <td>-0.5</td>\n",
|
| 652 |
+
" <td>-0.2</td>\n",
|
| 653 |
+
" <td>0.0</td>\n",
|
| 654 |
+
" <td>-0.5</td>\n",
|
| 655 |
+
" <td>0.6</td>\n",
|
| 656 |
+
" <td>-0.4</td>\n",
|
| 657 |
+
" </tr>\n",
|
| 658 |
+
" </tbody>\n",
|
| 659 |
+
"</table>\n",
|
| 660 |
+
"<p>21062 rows × 15 columns</p>\n",
|
| 661 |
+
"</div>"
|
| 662 |
+
],
|
| 663 |
+
"text/plain": [
|
| 664 |
+
" RegionID RegionName RegionType SizeRank State City \\\n",
|
| 665 |
+
"0 102001 United States country 0 NaN NaN \n",
|
| 666 |
+
"1 394913 New York, NY msa 1 NY New York \n",
|
| 667 |
+
"2 753899 Los Angeles, CA msa 2 CA Los Angeles \n",
|
| 668 |
+
"3 394463 Chicago, IL msa 3 IL Chicago \n",
|
| 669 |
+
"4 394514 Dallas, TX msa 4 TX Dallas \n",
|
| 670 |
+
"... ... ... ... ... ... ... \n",
|
| 671 |
+
"20162 82097 55087 zip 39992 MN Warsaw \n",
|
| 672 |
+
"20163 85325 62093 zip 39992 IL NaN \n",
|
| 673 |
+
"20164 92085 77661 zip 39992 TX NaN \n",
|
| 674 |
+
"20165 92811 79078 zip 39992 TX NaN \n",
|
| 675 |
+
"20166 98183 95419 zip 39992 CA Camp Meeker \n",
|
| 676 |
+
"\n",
|
| 677 |
+
" Metro CountyName BaseDate \\\n",
|
| 678 |
+
"0 NaN NaN 2023-12-31 \n",
|
| 679 |
+
"1 New York, NY NaN 2023-12-31 \n",
|
| 680 |
+
"2 Los Angeles, CA NaN 2023-12-31 \n",
|
| 681 |
+
"3 Chicago, IL NaN 2023-12-31 \n",
|
| 682 |
+
"4 Dallas, TX NaN 2023-12-31 \n",
|
| 683 |
+
"... ... ... ... \n",
|
| 684 |
+
"20162 Faribault-Northfield, MN Rice County 2023-12-31 \n",
|
| 685 |
+
"20163 St. Louis, MO-IL Macoupin County 2023-12-31 \n",
|
| 686 |
+
"20164 Houston-The Woodlands-Sugar Land, TX Chambers County 2023-12-31 \n",
|
| 687 |
+
"20165 Borger, TX Hutchinson County 2023-12-31 \n",
|
| 688 |
+
"20166 Santa Rosa-Petaluma, CA Sonoma County 2023-12-31 \n",
|
| 689 |
+
"\n",
|
| 690 |
+
" Month Over Month % (Smoothed) Quarter Over Quarter % (Smoothed) \\\n",
|
| 691 |
+
"0 0.1 0.4 \n",
|
| 692 |
+
"1 0.2 0.2 \n",
|
| 693 |
+
"2 -0.1 -1.8 \n",
|
| 694 |
+
"3 0.1 0.4 \n",
|
| 695 |
+
"4 -0.1 0.0 \n",
|
| 696 |
+
"... ... ... \n",
|
| 697 |
+
"20162 0.1 0.7 \n",
|
| 698 |
+
"20163 0.9 0.4 \n",
|
| 699 |
+
"20164 -0.5 0.3 \n",
|
| 700 |
+
"20165 -1.2 -1.1 \n",
|
| 701 |
+
"20166 -0.5 -0.2 \n",
|
| 702 |
+
"\n",
|
| 703 |
+
" Year Over Year % (Smoothed) Month Over Month % (Raw) \\\n",
|
| 704 |
+
"0 3.5 -0.5 \n",
|
| 705 |
+
"1 1.0 -0.7 \n",
|
| 706 |
+
"2 0.7 -0.6 \n",
|
| 707 |
+
"3 1.6 -0.8 \n",
|
| 708 |
+
"4 3.2 -0.6 \n",
|
| 709 |
+
"... ... ... \n",
|
| 710 |
+
"20162 1.8 -0.9 \n",
|
| 711 |
+
"20163 3.7 -0.7 \n",
|
| 712 |
+
"20164 -0.6 -0.4 \n",
|
| 713 |
+
"20165 -3.1 -1.7 \n",
|
| 714 |
+
"20166 0.0 -0.5 \n",
|
| 715 |
+
"\n",
|
| 716 |
+
" Quarter Over Quarter % (Raw) Year Over Year % (Raw) \n",
|
| 717 |
+
"0 0.4 3.7 \n",
|
| 718 |
+
"1 -0.9 0.6 \n",
|
| 719 |
+
"2 0.8 1.4 \n",
|
| 720 |
+
"3 -0.2 1.4 \n",
|
| 721 |
+
"4 0.9 3.6 \n",
|
| 722 |
+
"... ... ... \n",
|
| 723 |
+
"20162 -0.2 2.6 \n",
|
| 724 |
+
"20163 0.4 2.3 \n",
|
| 725 |
+
"20164 0.0 1.2 \n",
|
| 726 |
+
"20165 -2.6 -1.9 \n",
|
| 727 |
+
"20166 0.6 -0.4 \n",
|
| 728 |
+
"\n",
|
| 729 |
+
"[21062 rows x 15 columns]"
|
| 730 |
+
]
|
| 731 |
+
},
|
| 732 |
+
"execution_count": 34,
|
| 733 |
+
"metadata": {},
|
| 734 |
+
"output_type": "execute_result"
|
| 735 |
+
}
|
| 736 |
+
],
|
| 737 |
+
"source": [
|
| 738 |
+
"cols = list(combined_df.columns)\n",
|
| 739 |
+
"result_cols = [x for x in cols if '%' in x]\n",
|
| 740 |
+
"cols\n",
|
| 741 |
+
"# check if string contains string\n",
|
| 742 |
+
"combined_df.columns\n",
|
| 743 |
+
"\n",
|
| 744 |
+
"all_cols = ['RegionID', 'RegionName', 'RegionType', 'SizeRank', 'StateName', 'State', 'City', 'Metro', 'CountyName',\n",
|
| 745 |
+
" 'BaseDate'] + result_cols\n",
|
| 746 |
+
"all_cols\n",
|
| 747 |
+
"\n",
|
| 748 |
+
"if not os.path.exists(FULL_PROCESSED_DIR_PATH):\n",
|
| 749 |
+
" os.makedirs(FULL_PROCESSED_DIR_PATH)\n",
|
| 750 |
+
"\n",
|
| 751 |
+
"final_df = combined_df[all_cols]\n",
|
| 752 |
+
"final_df = final_df.drop('StateName', axis=1)\n",
|
| 753 |
+
"\n",
|
| 754 |
+
"# iterate over rows of final_df and populate State and City columns if the regionType is msa\n",
|
| 755 |
+
"for index, row in final_df.iterrows():\n",
|
| 756 |
+
" if row['RegionType'] == 'msa':\n",
|
| 757 |
+
" regionName = row['RegionName']\n",
|
| 758 |
+
" final_df.at[index, 'Metro'] = regionName\n",
|
| 759 |
+
" \n",
|
| 760 |
+
" city = regionName.split(', ')[0]\n",
|
| 761 |
+
" final_df.at[index, 'City'] = city\n",
|
| 762 |
+
" \n",
|
| 763 |
+
" state = regionName.split(', ')[1]\n",
|
| 764 |
+
" final_df.at[index, 'State'] = state\n",
|
| 765 |
+
"\n",
|
| 766 |
+
"final_df"
|
| 767 |
+
]
|
| 768 |
+
},
|
| 769 |
+
{
|
| 770 |
+
"cell_type": "code",
|
| 771 |
+
"execution_count": 36,
|
| 772 |
+
"metadata": {},
|
| 773 |
+
"outputs": [],
|
| 774 |
+
"source": [
|
| 775 |
+
"final_df.to_csv(FULL_PROCESSED_DIR_PATH + 'final.csv', index=False)"
|
| 776 |
+
]
|
| 777 |
+
}
|
| 778 |
+
],
|
| 779 |
+
"metadata": {
|
| 780 |
+
"kernelspec": {
|
| 781 |
+
"display_name": "Python 3",
|
| 782 |
+
"language": "python",
|
| 783 |
+
"name": "python3"
|
| 784 |
+
},
|
| 785 |
+
"language_info": {
|
| 786 |
+
"codemirror_mode": {
|
| 787 |
+
"name": "ipython",
|
| 788 |
+
"version": 3
|
| 789 |
+
},
|
| 790 |
+
"file_extension": ".py",
|
| 791 |
+
"mimetype": "text/x-python",
|
| 792 |
+
"name": "python",
|
| 793 |
+
"nbconvert_exporter": "python",
|
| 794 |
+
"pygments_lexer": "ipython3",
|
| 795 |
+
"version": "3.12.2"
|
| 796 |
+
}
|
| 797 |
+
},
|
| 798 |
+
"nbformat": 4,
|
| 799 |
+
"nbformat_minor": 2
|
| 800 |
+
}
|
processed/home_value_forecasts/final.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|