fix: simplify processors
Browse files- new_dataset_script.py +0 -183
- processors/days_on_market.ipynb +0 -3
- processors/for_sale_listings.ipynb +0 -3
- processors/helpers.py +17 -15
- processors/home_value_forecasts.ipynb +1 -3
- processors/home_values.ipynb +0 -3
- processors/new_construction.ipynb +0 -3
- processors/rentals.ipynb +0 -3
- processors/sales.ipynb +0 -3
new_dataset_script.py
DELETED
|
@@ -1,183 +0,0 @@
|
|
| 1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
# TODO: Address all TODOs and remove all explanatory comments
|
| 15 |
-
"""TODO: Add a description here."""
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
import csv
|
| 19 |
-
import json
|
| 20 |
-
import os
|
| 21 |
-
|
| 22 |
-
import datasets
|
| 23 |
-
|
| 24 |
-
# TODO: Add BibTeX citation
|
| 25 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 26 |
-
_CITATION = """\
|
| 27 |
-
@InProceedings{huggingface:dataset,
|
| 28 |
-
title = {A great new dataset},
|
| 29 |
-
author={huggingface, Inc.
|
| 30 |
-
},
|
| 31 |
-
year={2020}
|
| 32 |
-
}
|
| 33 |
-
"""
|
| 34 |
-
|
| 35 |
-
# TODO: Add description of the dataset here
|
| 36 |
-
# You can copy an official description
|
| 37 |
-
_DESCRIPTION = """\
|
| 38 |
-
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
|
| 39 |
-
"""
|
| 40 |
-
|
| 41 |
-
# TODO: Add a link to an official homepage for the dataset here
|
| 42 |
-
_HOMEPAGE = ""
|
| 43 |
-
|
| 44 |
-
# TODO: Add the licence for the dataset here if you can find it
|
| 45 |
-
_LICENSE = ""
|
| 46 |
-
|
| 47 |
-
# TODO: Add link to the official dataset URLs here
|
| 48 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
| 49 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 50 |
-
_URLS = {
|
| 51 |
-
"first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
|
| 52 |
-
"second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
| 53 |
-
}
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
| 57 |
-
class NewDataset(datasets.GeneratorBasedBuilder):
|
| 58 |
-
"""TODO: Short description of my dataset."""
|
| 59 |
-
|
| 60 |
-
VERSION = datasets.Version("1.1.0")
|
| 61 |
-
|
| 62 |
-
# This is an example of a dataset with multiple configurations.
|
| 63 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
| 64 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 65 |
-
|
| 66 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
| 67 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
| 68 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
| 69 |
-
|
| 70 |
-
# You will be able to load one or the other configurations in the following list with
|
| 71 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 72 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 73 |
-
BUILDER_CONFIGS = [
|
| 74 |
-
datasets.BuilderConfig(
|
| 75 |
-
name="first_domain",
|
| 76 |
-
version=VERSION,
|
| 77 |
-
description="This part of my dataset covers a first domain",
|
| 78 |
-
),
|
| 79 |
-
datasets.BuilderConfig(
|
| 80 |
-
name="second_domain",
|
| 81 |
-
version=VERSION,
|
| 82 |
-
description="This part of my dataset covers a second domain",
|
| 83 |
-
),
|
| 84 |
-
]
|
| 85 |
-
|
| 86 |
-
DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 87 |
-
|
| 88 |
-
def _info(self):
|
| 89 |
-
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
| 90 |
-
if (
|
| 91 |
-
self.config.name == "first_domain"
|
| 92 |
-
): # This is the name of the configuration selected in BUILDER_CONFIGS above
|
| 93 |
-
features = datasets.Features(
|
| 94 |
-
{
|
| 95 |
-
"sentence": datasets.Value("string"),
|
| 96 |
-
"option1": datasets.Value("string"),
|
| 97 |
-
"answer": datasets.Value("string"),
|
| 98 |
-
# These are the features of your dataset like images, labels ...
|
| 99 |
-
}
|
| 100 |
-
)
|
| 101 |
-
else: # This is an example to show how to have different features for "first_domain" and "second_domain"
|
| 102 |
-
features = datasets.Features(
|
| 103 |
-
{
|
| 104 |
-
"sentence": datasets.Value("string"),
|
| 105 |
-
"option2": datasets.Value("string"),
|
| 106 |
-
"second_domain_answer": datasets.Value("string"),
|
| 107 |
-
# These are the features of your dataset like images, labels ...
|
| 108 |
-
}
|
| 109 |
-
)
|
| 110 |
-
return datasets.DatasetInfo(
|
| 111 |
-
# This is the description that will appear on the datasets page.
|
| 112 |
-
description=_DESCRIPTION,
|
| 113 |
-
# This defines the different columns of the dataset and their types
|
| 114 |
-
features=features, # Here we define them above because they are different between the two configurations
|
| 115 |
-
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
| 116 |
-
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
| 117 |
-
# supervised_keys=("sentence", "label"),
|
| 118 |
-
# Homepage of the dataset for documentation
|
| 119 |
-
homepage=_HOMEPAGE,
|
| 120 |
-
# License for the dataset if available
|
| 121 |
-
license=_LICENSE,
|
| 122 |
-
# Citation for the dataset
|
| 123 |
-
citation=_CITATION,
|
| 124 |
-
)
|
| 125 |
-
|
| 126 |
-
def _split_generators(self, dl_manager):
|
| 127 |
-
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
| 128 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
| 129 |
-
|
| 130 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
| 131 |
-
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 132 |
-
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 133 |
-
urls = _URLS[self.config.name]
|
| 134 |
-
data_dir = dl_manager.download_and_extract(urls)
|
| 135 |
-
return [
|
| 136 |
-
datasets.SplitGenerator(
|
| 137 |
-
name=datasets.Split.TRAIN,
|
| 138 |
-
# These kwargs will be passed to _generate_examples
|
| 139 |
-
gen_kwargs={
|
| 140 |
-
"filepath": os.path.join(data_dir, "train.jsonl"),
|
| 141 |
-
"split": "train",
|
| 142 |
-
},
|
| 143 |
-
),
|
| 144 |
-
datasets.SplitGenerator(
|
| 145 |
-
name=datasets.Split.VALIDATION,
|
| 146 |
-
# These kwargs will be passed to _generate_examples
|
| 147 |
-
gen_kwargs={
|
| 148 |
-
"filepath": os.path.join(data_dir, "dev.jsonl"),
|
| 149 |
-
"split": "dev",
|
| 150 |
-
},
|
| 151 |
-
),
|
| 152 |
-
datasets.SplitGenerator(
|
| 153 |
-
name=datasets.Split.TEST,
|
| 154 |
-
# These kwargs will be passed to _generate_examples
|
| 155 |
-
gen_kwargs={
|
| 156 |
-
"filepath": os.path.join(data_dir, "test.jsonl"),
|
| 157 |
-
"split": "test",
|
| 158 |
-
},
|
| 159 |
-
),
|
| 160 |
-
]
|
| 161 |
-
|
| 162 |
-
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 163 |
-
def _generate_examples(self, filepath, split):
|
| 164 |
-
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
| 165 |
-
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
| 166 |
-
with open(filepath, encoding="utf-8") as f:
|
| 167 |
-
for key, row in enumerate(f):
|
| 168 |
-
data = json.loads(row)
|
| 169 |
-
if self.config.name == "first_domain":
|
| 170 |
-
# Yields examples as (key, example) tuples
|
| 171 |
-
yield key, {
|
| 172 |
-
"sentence": data["sentence"],
|
| 173 |
-
"option1": data["option1"],
|
| 174 |
-
"answer": "" if split == "test" else data["answer"],
|
| 175 |
-
}
|
| 176 |
-
else:
|
| 177 |
-
yield key, {
|
| 178 |
-
"sentence": data["sentence"],
|
| 179 |
-
"option2": data["option2"],
|
| 180 |
-
"second_domain_answer": (
|
| 181 |
-
"" if split == "test" else data["second_domain_answer"]
|
| 182 |
-
),
|
| 183 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
processors/days_on_market.ipynb
CHANGED
|
@@ -11,7 +11,6 @@
|
|
| 11 |
"\n",
|
| 12 |
"from helpers import (\n",
|
| 13 |
" get_combined_df,\n",
|
| 14 |
-
" coalesce_columns,\n",
|
| 15 |
" save_final_df_as_jsonl,\n",
|
| 16 |
" handle_slug_column_mappings,\n",
|
| 17 |
")"
|
|
@@ -329,8 +328,6 @@
|
|
| 329 |
" ],\n",
|
| 330 |
")\n",
|
| 331 |
"\n",
|
| 332 |
-
"combined_df = coalesce_columns(combined_df)\n",
|
| 333 |
-
"\n",
|
| 334 |
"combined_df"
|
| 335 |
]
|
| 336 |
},
|
|
|
|
| 11 |
"\n",
|
| 12 |
"from helpers import (\n",
|
| 13 |
" get_combined_df,\n",
|
|
|
|
| 14 |
" save_final_df_as_jsonl,\n",
|
| 15 |
" handle_slug_column_mappings,\n",
|
| 16 |
")"
|
|
|
|
| 328 |
" ],\n",
|
| 329 |
")\n",
|
| 330 |
"\n",
|
|
|
|
|
|
|
| 331 |
"combined_df"
|
| 332 |
]
|
| 333 |
},
|
processors/for_sale_listings.ipynb
CHANGED
|
@@ -11,7 +11,6 @@
|
|
| 11 |
"\n",
|
| 12 |
"from helpers import (\n",
|
| 13 |
" get_combined_df,\n",
|
| 14 |
-
" coalesce_columns,\n",
|
| 15 |
" save_final_df_as_jsonl,\n",
|
| 16 |
" handle_slug_column_mappings,\n",
|
| 17 |
")"
|
|
@@ -397,8 +396,6 @@
|
|
| 397 |
" ],\n",
|
| 398 |
")\n",
|
| 399 |
"\n",
|
| 400 |
-
"combined_df = coalesce_columns(combined_df)\n",
|
| 401 |
-
"\n",
|
| 402 |
"combined_df"
|
| 403 |
]
|
| 404 |
},
|
|
|
|
| 11 |
"\n",
|
| 12 |
"from helpers import (\n",
|
| 13 |
" get_combined_df,\n",
|
|
|
|
| 14 |
" save_final_df_as_jsonl,\n",
|
| 15 |
" handle_slug_column_mappings,\n",
|
| 16 |
")"
|
|
|
|
| 396 |
" ],\n",
|
| 397 |
")\n",
|
| 398 |
"\n",
|
|
|
|
|
|
|
| 399 |
"combined_df"
|
| 400 |
]
|
| 401 |
},
|
processors/helpers.py
CHANGED
|
@@ -2,6 +2,22 @@ import pandas as pd
|
|
| 2 |
import os
|
| 3 |
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
def get_combined_df(data_frames, on):
|
| 6 |
combined_df = None
|
| 7 |
if len(data_frames) > 1:
|
|
@@ -19,22 +35,8 @@ def get_combined_df(data_frames, on):
|
|
| 19 |
elif len(data_frames) == 1:
|
| 20 |
combined_df = data_frames[0]
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
|
| 25 |
-
def coalesce_columns(
|
| 26 |
-
df,
|
| 27 |
-
):
|
| 28 |
-
columns_to_coalesce = [col for col in df.columns if "_" not in col]
|
| 29 |
-
for index, row in df.iterrows():
|
| 30 |
-
for col in df.columns:
|
| 31 |
-
for column_to_coalesce in columns_to_coalesce:
|
| 32 |
-
if column_to_coalesce in col and "_" in col:
|
| 33 |
-
if not pd.isna(row[col]):
|
| 34 |
-
df.at[index, column_to_coalesce] = row[col]
|
| 35 |
-
|
| 36 |
-
# remove columns with underscores
|
| 37 |
-
combined_df = df[columns_to_coalesce]
|
| 38 |
return combined_df
|
| 39 |
|
| 40 |
|
|
|
|
| 2 |
import os
|
| 3 |
|
| 4 |
|
| 5 |
+
def coalesce_columns(
|
| 6 |
+
df,
|
| 7 |
+
):
|
| 8 |
+
columns_to_coalesce = [col for col in df.columns if "_" not in col]
|
| 9 |
+
for index, row in df.iterrows():
|
| 10 |
+
for col in df.columns:
|
| 11 |
+
for column_to_coalesce in columns_to_coalesce:
|
| 12 |
+
if column_to_coalesce in col and "_" in col:
|
| 13 |
+
if not pd.isna(row[col]):
|
| 14 |
+
df.at[index, column_to_coalesce] = row[col]
|
| 15 |
+
|
| 16 |
+
# remove columns with underscores
|
| 17 |
+
combined_df = df[columns_to_coalesce]
|
| 18 |
+
return combined_df
|
| 19 |
+
|
| 20 |
+
|
| 21 |
def get_combined_df(data_frames, on):
|
| 22 |
combined_df = None
|
| 23 |
if len(data_frames) > 1:
|
|
|
|
| 35 |
elif len(data_frames) == 1:
|
| 36 |
combined_df = data_frames[0]
|
| 37 |
|
| 38 |
+
combined_df = coalesce_columns(combined_df)
|
|
|
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
return combined_df
|
| 41 |
|
| 42 |
|
processors/home_value_forecasts.ipynb
CHANGED
|
@@ -9,7 +9,7 @@
|
|
| 9 |
"import pandas as pd\n",
|
| 10 |
"import os\n",
|
| 11 |
"\n",
|
| 12 |
-
"from helpers import get_combined_df,
|
| 13 |
]
|
| 14 |
},
|
| 15 |
{
|
|
@@ -414,8 +414,6 @@
|
|
| 414 |
" ],\n",
|
| 415 |
")\n",
|
| 416 |
"\n",
|
| 417 |
-
"combined_df = coalesce_columns(combined_df)\n",
|
| 418 |
-
"\n",
|
| 419 |
"combined_df"
|
| 420 |
]
|
| 421 |
},
|
|
|
|
| 9 |
"import pandas as pd\n",
|
| 10 |
"import os\n",
|
| 11 |
"\n",
|
| 12 |
+
"from helpers import get_combined_df, save_final_df_as_jsonl"
|
| 13 |
]
|
| 14 |
},
|
| 15 |
{
|
|
|
|
| 414 |
" ],\n",
|
| 415 |
")\n",
|
| 416 |
"\n",
|
|
|
|
|
|
|
| 417 |
"combined_df"
|
| 418 |
]
|
| 419 |
},
|
processors/home_values.ipynb
CHANGED
|
@@ -11,7 +11,6 @@
|
|
| 11 |
"\n",
|
| 12 |
"from helpers import (\n",
|
| 13 |
" get_combined_df,\n",
|
| 14 |
-
" coalesce_columns,\n",
|
| 15 |
" save_final_df_as_jsonl,\n",
|
| 16 |
" handle_slug_column_mappings,\n",
|
| 17 |
")"
|
|
@@ -466,8 +465,6 @@
|
|
| 466 |
" ],\n",
|
| 467 |
")\n",
|
| 468 |
"\n",
|
| 469 |
-
"combined_df = coalesce_columns(combined_df)\n",
|
| 470 |
-
"\n",
|
| 471 |
"combined_df"
|
| 472 |
]
|
| 473 |
},
|
|
|
|
| 11 |
"\n",
|
| 12 |
"from helpers import (\n",
|
| 13 |
" get_combined_df,\n",
|
|
|
|
| 14 |
" save_final_df_as_jsonl,\n",
|
| 15 |
" handle_slug_column_mappings,\n",
|
| 16 |
")"
|
|
|
|
| 465 |
" ],\n",
|
| 466 |
")\n",
|
| 467 |
"\n",
|
|
|
|
|
|
|
| 468 |
"combined_df"
|
| 469 |
]
|
| 470 |
},
|
processors/new_construction.ipynb
CHANGED
|
@@ -11,7 +11,6 @@
|
|
| 11 |
"\n",
|
| 12 |
"from helpers import (\n",
|
| 13 |
" get_combined_df,\n",
|
| 14 |
-
" coalesce_columns,\n",
|
| 15 |
" save_final_df_as_jsonl,\n",
|
| 16 |
" handle_slug_column_mappings,\n",
|
| 17 |
")"
|
|
@@ -315,8 +314,6 @@
|
|
| 315 |
" ],\n",
|
| 316 |
")\n",
|
| 317 |
"\n",
|
| 318 |
-
"combined_df = coalesce_columns(combined_df)\n",
|
| 319 |
-
"\n",
|
| 320 |
"combined_df"
|
| 321 |
]
|
| 322 |
},
|
|
|
|
| 11 |
"\n",
|
| 12 |
"from helpers import (\n",
|
| 13 |
" get_combined_df,\n",
|
|
|
|
| 14 |
" save_final_df_as_jsonl,\n",
|
| 15 |
" handle_slug_column_mappings,\n",
|
| 16 |
")"
|
|
|
|
| 314 |
" ],\n",
|
| 315 |
")\n",
|
| 316 |
"\n",
|
|
|
|
|
|
|
| 317 |
"combined_df"
|
| 318 |
]
|
| 319 |
},
|
processors/rentals.ipynb
CHANGED
|
@@ -11,7 +11,6 @@
|
|
| 11 |
"\n",
|
| 12 |
"from helpers import (\n",
|
| 13 |
" get_combined_df,\n",
|
| 14 |
-
" coalesce_columns,\n",
|
| 15 |
" save_final_df_as_jsonl,\n",
|
| 16 |
" handle_slug_column_mappings,\n",
|
| 17 |
")"
|
|
@@ -438,8 +437,6 @@
|
|
| 438 |
" ],\n",
|
| 439 |
")\n",
|
| 440 |
"\n",
|
| 441 |
-
"combined_df = coalesce_columns(combined_df)\n",
|
| 442 |
-
"\n",
|
| 443 |
"combined_df"
|
| 444 |
]
|
| 445 |
},
|
|
|
|
| 11 |
"\n",
|
| 12 |
"from helpers import (\n",
|
| 13 |
" get_combined_df,\n",
|
|
|
|
| 14 |
" save_final_df_as_jsonl,\n",
|
| 15 |
" handle_slug_column_mappings,\n",
|
| 16 |
")"
|
|
|
|
| 437 |
" ],\n",
|
| 438 |
")\n",
|
| 439 |
"\n",
|
|
|
|
|
|
|
| 440 |
"combined_df"
|
| 441 |
]
|
| 442 |
},
|
processors/sales.ipynb
CHANGED
|
@@ -11,7 +11,6 @@
|
|
| 11 |
"\n",
|
| 12 |
"from helpers import (\n",
|
| 13 |
" get_combined_df,\n",
|
| 14 |
-
" coalesce_columns,\n",
|
| 15 |
" save_final_df_as_jsonl,\n",
|
| 16 |
" handle_slug_column_mappings,\n",
|
| 17 |
")"
|
|
@@ -525,8 +524,6 @@
|
|
| 525 |
" ],\n",
|
| 526 |
")\n",
|
| 527 |
"\n",
|
| 528 |
-
"combined_df = coalesce_columns(combined_df)\n",
|
| 529 |
-
"\n",
|
| 530 |
"combined_df"
|
| 531 |
]
|
| 532 |
},
|
|
|
|
| 11 |
"\n",
|
| 12 |
"from helpers import (\n",
|
| 13 |
" get_combined_df,\n",
|
|
|
|
| 14 |
" save_final_df_as_jsonl,\n",
|
| 15 |
" handle_slug_column_mappings,\n",
|
| 16 |
")"
|
|
|
|
| 524 |
" ],\n",
|
| 525 |
")\n",
|
| 526 |
"\n",
|
|
|
|
|
|
|
| 527 |
"combined_df"
|
| 528 |
]
|
| 529 |
},
|