fix: regiontype to region type and use categories instead of strings where possible
Browse files
checker.ipynb
ADDED
|
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"# import json as pandas\n",
|
| 10 |
+
"import pandas as pd"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "code",
|
| 15 |
+
"execution_count": 27,
|
| 16 |
+
"metadata": {},
|
| 17 |
+
"outputs": [
|
| 18 |
+
{
|
| 19 |
+
"data": {
|
| 20 |
+
"text/html": [
|
| 21 |
+
"<div>\n",
|
| 22 |
+
"<style scoped>\n",
|
| 23 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 24 |
+
" vertical-align: middle;\n",
|
| 25 |
+
" }\n",
|
| 26 |
+
"\n",
|
| 27 |
+
" .dataframe tbody tr th {\n",
|
| 28 |
+
" vertical-align: top;\n",
|
| 29 |
+
" }\n",
|
| 30 |
+
"\n",
|
| 31 |
+
" .dataframe thead th {\n",
|
| 32 |
+
" text-align: right;\n",
|
| 33 |
+
" }\n",
|
| 34 |
+
"</style>\n",
|
| 35 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 36 |
+
" <thead>\n",
|
| 37 |
+
" <tr style=\"text-align: right;\">\n",
|
| 38 |
+
" <th></th>\n",
|
| 39 |
+
" <th>Region ID</th>\n",
|
| 40 |
+
" <th>Size Rank</th>\n",
|
| 41 |
+
" <th>Region</th>\n",
|
| 42 |
+
" <th>Region Type</th>\n",
|
| 43 |
+
" <th>Home Type</th>\n",
|
| 44 |
+
" <th>State</th>\n",
|
| 45 |
+
" <th>Metro</th>\n",
|
| 46 |
+
" <th>State Code FIPS</th>\n",
|
| 47 |
+
" <th>Municipal Code FIPS</th>\n",
|
| 48 |
+
" <th>Date</th>\n",
|
| 49 |
+
" <th>Rent (Smoothed)</th>\n",
|
| 50 |
+
" <th>Rent (Smoothed) (Seasonally Adjusted)</th>\n",
|
| 51 |
+
" <th>City</th>\n",
|
| 52 |
+
" <th>County</th>\n",
|
| 53 |
+
" </tr>\n",
|
| 54 |
+
" </thead>\n",
|
| 55 |
+
" <tbody>\n",
|
| 56 |
+
" <tr>\n",
|
| 57 |
+
" <th>0</th>\n",
|
| 58 |
+
" <td>66</td>\n",
|
| 59 |
+
" <td>146</td>\n",
|
| 60 |
+
" <td>Ada County</td>\n",
|
| 61 |
+
" <td>county</td>\n",
|
| 62 |
+
" <td>all homes plus multifamily</td>\n",
|
| 63 |
+
" <td>Ada County</td>\n",
|
| 64 |
+
" <td>Boise City, ID</td>\n",
|
| 65 |
+
" <td>16.0</td>\n",
|
| 66 |
+
" <td>1.0</td>\n",
|
| 67 |
+
" <td>2015-01-31</td>\n",
|
| 68 |
+
" <td>927.493763</td>\n",
|
| 69 |
+
" <td>927.493763</td>\n",
|
| 70 |
+
" <td>None</td>\n",
|
| 71 |
+
" <td>Ada County</td>\n",
|
| 72 |
+
" </tr>\n",
|
| 73 |
+
" <tr>\n",
|
| 74 |
+
" <th>1</th>\n",
|
| 75 |
+
" <td>66</td>\n",
|
| 76 |
+
" <td>146</td>\n",
|
| 77 |
+
" <td>Ada County</td>\n",
|
| 78 |
+
" <td>county</td>\n",
|
| 79 |
+
" <td>all homes plus multifamily</td>\n",
|
| 80 |
+
" <td>Ada County</td>\n",
|
| 81 |
+
" <td>Boise City, ID</td>\n",
|
| 82 |
+
" <td>16.0</td>\n",
|
| 83 |
+
" <td>1.0</td>\n",
|
| 84 |
+
" <td>2015-02-28</td>\n",
|
| 85 |
+
" <td>931.690623</td>\n",
|
| 86 |
+
" <td>931.690623</td>\n",
|
| 87 |
+
" <td>None</td>\n",
|
| 88 |
+
" <td>Ada County</td>\n",
|
| 89 |
+
" </tr>\n",
|
| 90 |
+
" <tr>\n",
|
| 91 |
+
" <th>2</th>\n",
|
| 92 |
+
" <td>66</td>\n",
|
| 93 |
+
" <td>146</td>\n",
|
| 94 |
+
" <td>Ada County</td>\n",
|
| 95 |
+
" <td>county</td>\n",
|
| 96 |
+
" <td>all homes plus multifamily</td>\n",
|
| 97 |
+
" <td>Ada County</td>\n",
|
| 98 |
+
" <td>Boise City, ID</td>\n",
|
| 99 |
+
" <td>16.0</td>\n",
|
| 100 |
+
" <td>1.0</td>\n",
|
| 101 |
+
" <td>2015-03-31</td>\n",
|
| 102 |
+
" <td>932.568601</td>\n",
|
| 103 |
+
" <td>932.568601</td>\n",
|
| 104 |
+
" <td>None</td>\n",
|
| 105 |
+
" <td>Ada County</td>\n",
|
| 106 |
+
" </tr>\n",
|
| 107 |
+
" <tr>\n",
|
| 108 |
+
" <th>3</th>\n",
|
| 109 |
+
" <td>66</td>\n",
|
| 110 |
+
" <td>146</td>\n",
|
| 111 |
+
" <td>Ada County</td>\n",
|
| 112 |
+
" <td>county</td>\n",
|
| 113 |
+
" <td>all homes plus multifamily</td>\n",
|
| 114 |
+
" <td>Ada County</td>\n",
|
| 115 |
+
" <td>Boise City, ID</td>\n",
|
| 116 |
+
" <td>16.0</td>\n",
|
| 117 |
+
" <td>1.0</td>\n",
|
| 118 |
+
" <td>2015-04-30</td>\n",
|
| 119 |
+
" <td>933.148134</td>\n",
|
| 120 |
+
" <td>933.148134</td>\n",
|
| 121 |
+
" <td>None</td>\n",
|
| 122 |
+
" <td>Ada County</td>\n",
|
| 123 |
+
" </tr>\n",
|
| 124 |
+
" <tr>\n",
|
| 125 |
+
" <th>4</th>\n",
|
| 126 |
+
" <td>66</td>\n",
|
| 127 |
+
" <td>146</td>\n",
|
| 128 |
+
" <td>Ada County</td>\n",
|
| 129 |
+
" <td>county</td>\n",
|
| 130 |
+
" <td>all homes plus multifamily</td>\n",
|
| 131 |
+
" <td>Ada County</td>\n",
|
| 132 |
+
" <td>Boise City, ID</td>\n",
|
| 133 |
+
" <td>16.0</td>\n",
|
| 134 |
+
" <td>1.0</td>\n",
|
| 135 |
+
" <td>2015-05-31</td>\n",
|
| 136 |
+
" <td>941.045724</td>\n",
|
| 137 |
+
" <td>941.045724</td>\n",
|
| 138 |
+
" <td>None</td>\n",
|
| 139 |
+
" <td>Ada County</td>\n",
|
| 140 |
+
" </tr>\n",
|
| 141 |
+
" <tr>\n",
|
| 142 |
+
" <th>...</th>\n",
|
| 143 |
+
" <td>...</td>\n",
|
| 144 |
+
" <td>...</td>\n",
|
| 145 |
+
" <td>...</td>\n",
|
| 146 |
+
" <td>...</td>\n",
|
| 147 |
+
" <td>...</td>\n",
|
| 148 |
+
" <td>...</td>\n",
|
| 149 |
+
" <td>...</td>\n",
|
| 150 |
+
" <td>...</td>\n",
|
| 151 |
+
" <td>...</td>\n",
|
| 152 |
+
" <td>...</td>\n",
|
| 153 |
+
" <td>...</td>\n",
|
| 154 |
+
" <td>...</td>\n",
|
| 155 |
+
" <td>...</td>\n",
|
| 156 |
+
" <td>...</td>\n",
|
| 157 |
+
" </tr>\n",
|
| 158 |
+
" <tr>\n",
|
| 159 |
+
" <th>1258735</th>\n",
|
| 160 |
+
" <td>857850</td>\n",
|
| 161 |
+
" <td>713</td>\n",
|
| 162 |
+
" <td>Cherry Hill</td>\n",
|
| 163 |
+
" <td>city</td>\n",
|
| 164 |
+
" <td>all homes plus multifamily</td>\n",
|
| 165 |
+
" <td>Camden County</td>\n",
|
| 166 |
+
" <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
|
| 167 |
+
" <td>NaN</td>\n",
|
| 168 |
+
" <td>NaN</td>\n",
|
| 169 |
+
" <td>2023-08-31</td>\n",
|
| 170 |
+
" <td>2291.604800</td>\n",
|
| 171 |
+
" <td>2244.961006</td>\n",
|
| 172 |
+
" <td>Cherry Hill</td>\n",
|
| 173 |
+
" <td>None</td>\n",
|
| 174 |
+
" </tr>\n",
|
| 175 |
+
" <tr>\n",
|
| 176 |
+
" <th>1258736</th>\n",
|
| 177 |
+
" <td>857850</td>\n",
|
| 178 |
+
" <td>713</td>\n",
|
| 179 |
+
" <td>Cherry Hill</td>\n",
|
| 180 |
+
" <td>city</td>\n",
|
| 181 |
+
" <td>all homes plus multifamily</td>\n",
|
| 182 |
+
" <td>Camden County</td>\n",
|
| 183 |
+
" <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
|
| 184 |
+
" <td>NaN</td>\n",
|
| 185 |
+
" <td>NaN</td>\n",
|
| 186 |
+
" <td>2023-09-30</td>\n",
|
| 187 |
+
" <td>2296.188906</td>\n",
|
| 188 |
+
" <td>2254.213172</td>\n",
|
| 189 |
+
" <td>Cherry Hill</td>\n",
|
| 190 |
+
" <td>None</td>\n",
|
| 191 |
+
" </tr>\n",
|
| 192 |
+
" <tr>\n",
|
| 193 |
+
" <th>1258737</th>\n",
|
| 194 |
+
" <td>857850</td>\n",
|
| 195 |
+
" <td>713</td>\n",
|
| 196 |
+
" <td>Cherry Hill</td>\n",
|
| 197 |
+
" <td>city</td>\n",
|
| 198 |
+
" <td>all homes plus multifamily</td>\n",
|
| 199 |
+
" <td>Camden County</td>\n",
|
| 200 |
+
" <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
|
| 201 |
+
" <td>NaN</td>\n",
|
| 202 |
+
" <td>NaN</td>\n",
|
| 203 |
+
" <td>2023-10-31</td>\n",
|
| 204 |
+
" <td>2292.270938</td>\n",
|
| 205 |
+
" <td>2261.540446</td>\n",
|
| 206 |
+
" <td>Cherry Hill</td>\n",
|
| 207 |
+
" <td>None</td>\n",
|
| 208 |
+
" </tr>\n",
|
| 209 |
+
" <tr>\n",
|
| 210 |
+
" <th>1258738</th>\n",
|
| 211 |
+
" <td>857850</td>\n",
|
| 212 |
+
" <td>713</td>\n",
|
| 213 |
+
" <td>Cherry Hill</td>\n",
|
| 214 |
+
" <td>city</td>\n",
|
| 215 |
+
" <td>all homes plus multifamily</td>\n",
|
| 216 |
+
" <td>Camden County</td>\n",
|
| 217 |
+
" <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
|
| 218 |
+
" <td>NaN</td>\n",
|
| 219 |
+
" <td>NaN</td>\n",
|
| 220 |
+
" <td>2023-11-30</td>\n",
|
| 221 |
+
" <td>2253.417140</td>\n",
|
| 222 |
+
" <td>2257.956024</td>\n",
|
| 223 |
+
" <td>Cherry Hill</td>\n",
|
| 224 |
+
" <td>None</td>\n",
|
| 225 |
+
" </tr>\n",
|
| 226 |
+
" <tr>\n",
|
| 227 |
+
" <th>1258739</th>\n",
|
| 228 |
+
" <td>857850</td>\n",
|
| 229 |
+
" <td>713</td>\n",
|
| 230 |
+
" <td>Cherry Hill</td>\n",
|
| 231 |
+
" <td>city</td>\n",
|
| 232 |
+
" <td>all homes plus multifamily</td>\n",
|
| 233 |
+
" <td>Camden County</td>\n",
|
| 234 |
+
" <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
|
| 235 |
+
" <td>NaN</td>\n",
|
| 236 |
+
" <td>NaN</td>\n",
|
| 237 |
+
" <td>2023-12-31</td>\n",
|
| 238 |
+
" <td>2280.830303</td>\n",
|
| 239 |
+
" <td>2280.830303</td>\n",
|
| 240 |
+
" <td>Cherry Hill</td>\n",
|
| 241 |
+
" <td>None</td>\n",
|
| 242 |
+
" </tr>\n",
|
| 243 |
+
" </tbody>\n",
|
| 244 |
+
"</table>\n",
|
| 245 |
+
"<p>1258740 rows × 14 columns</p>\n",
|
| 246 |
+
"</div>"
|
| 247 |
+
],
|
| 248 |
+
"text/plain": [
|
| 249 |
+
" Region ID Size Rank Region Region Type \\\n",
|
| 250 |
+
"0 66 146 Ada County county \n",
|
| 251 |
+
"1 66 146 Ada County county \n",
|
| 252 |
+
"2 66 146 Ada County county \n",
|
| 253 |
+
"3 66 146 Ada County county \n",
|
| 254 |
+
"4 66 146 Ada County county \n",
|
| 255 |
+
"... ... ... ... ... \n",
|
| 256 |
+
"1258735 857850 713 Cherry Hill city \n",
|
| 257 |
+
"1258736 857850 713 Cherry Hill city \n",
|
| 258 |
+
"1258737 857850 713 Cherry Hill city \n",
|
| 259 |
+
"1258738 857850 713 Cherry Hill city \n",
|
| 260 |
+
"1258739 857850 713 Cherry Hill city \n",
|
| 261 |
+
"\n",
|
| 262 |
+
" Home Type State \\\n",
|
| 263 |
+
"0 all homes plus multifamily Ada County \n",
|
| 264 |
+
"1 all homes plus multifamily Ada County \n",
|
| 265 |
+
"2 all homes plus multifamily Ada County \n",
|
| 266 |
+
"3 all homes plus multifamily Ada County \n",
|
| 267 |
+
"4 all homes plus multifamily Ada County \n",
|
| 268 |
+
"... ... ... \n",
|
| 269 |
+
"1258735 all homes plus multifamily Camden County \n",
|
| 270 |
+
"1258736 all homes plus multifamily Camden County \n",
|
| 271 |
+
"1258737 all homes plus multifamily Camden County \n",
|
| 272 |
+
"1258738 all homes plus multifamily Camden County \n",
|
| 273 |
+
"1258739 all homes plus multifamily Camden County \n",
|
| 274 |
+
"\n",
|
| 275 |
+
" Metro State Code FIPS \\\n",
|
| 276 |
+
"0 Boise City, ID 16.0 \n",
|
| 277 |
+
"1 Boise City, ID 16.0 \n",
|
| 278 |
+
"2 Boise City, ID 16.0 \n",
|
| 279 |
+
"3 Boise City, ID 16.0 \n",
|
| 280 |
+
"4 Boise City, ID 16.0 \n",
|
| 281 |
+
"... ... ... \n",
|
| 282 |
+
"1258735 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
|
| 283 |
+
"1258736 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
|
| 284 |
+
"1258737 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
|
| 285 |
+
"1258738 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
|
| 286 |
+
"1258739 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
|
| 287 |
+
"\n",
|
| 288 |
+
" Municipal Code FIPS Date Rent (Smoothed) \\\n",
|
| 289 |
+
"0 1.0 2015-01-31 927.493763 \n",
|
| 290 |
+
"1 1.0 2015-02-28 931.690623 \n",
|
| 291 |
+
"2 1.0 2015-03-31 932.568601 \n",
|
| 292 |
+
"3 1.0 2015-04-30 933.148134 \n",
|
| 293 |
+
"4 1.0 2015-05-31 941.045724 \n",
|
| 294 |
+
"... ... ... ... \n",
|
| 295 |
+
"1258735 NaN 2023-08-31 2291.604800 \n",
|
| 296 |
+
"1258736 NaN 2023-09-30 2296.188906 \n",
|
| 297 |
+
"1258737 NaN 2023-10-31 2292.270938 \n",
|
| 298 |
+
"1258738 NaN 2023-11-30 2253.417140 \n",
|
| 299 |
+
"1258739 NaN 2023-12-31 2280.830303 \n",
|
| 300 |
+
"\n",
|
| 301 |
+
" Rent (Smoothed) (Seasonally Adjusted) City County \n",
|
| 302 |
+
"0 927.493763 None Ada County \n",
|
| 303 |
+
"1 931.690623 None Ada County \n",
|
| 304 |
+
"2 932.568601 None Ada County \n",
|
| 305 |
+
"3 933.148134 None Ada County \n",
|
| 306 |
+
"4 941.045724 None Ada County \n",
|
| 307 |
+
"... ... ... ... \n",
|
| 308 |
+
"1258735 2244.961006 Cherry Hill None \n",
|
| 309 |
+
"1258736 2254.213172 Cherry Hill None \n",
|
| 310 |
+
"1258737 2261.540446 Cherry Hill None \n",
|
| 311 |
+
"1258738 2257.956024 Cherry Hill None \n",
|
| 312 |
+
"1258739 2280.830303 Cherry Hill None \n",
|
| 313 |
+
"\n",
|
| 314 |
+
"[1258740 rows x 14 columns]"
|
| 315 |
+
]
|
| 316 |
+
},
|
| 317 |
+
"execution_count": 27,
|
| 318 |
+
"metadata": {},
|
| 319 |
+
"output_type": "execute_result"
|
| 320 |
+
}
|
| 321 |
+
],
|
| 322 |
+
"source": [
|
| 323 |
+
"# read the data\n",
|
| 324 |
+
"x = pd.read_json(\"processed/rentals/final5.jsonl\", lines=True)\n",
|
| 325 |
+
"x"
|
| 326 |
+
]
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
"cell_type": "code",
|
| 330 |
+
"execution_count": 28,
|
| 331 |
+
"metadata": {},
|
| 332 |
+
"outputs": [
|
| 333 |
+
{
|
| 334 |
+
"data": {
|
| 335 |
+
"text/plain": [
|
| 336 |
+
"array(['county', 'city', 'zip', 'country', 'msa'], dtype=object)"
|
| 337 |
+
]
|
| 338 |
+
},
|
| 339 |
+
"execution_count": 28,
|
| 340 |
+
"metadata": {},
|
| 341 |
+
"output_type": "execute_result"
|
| 342 |
+
}
|
| 343 |
+
],
|
| 344 |
+
"source": [
|
| 345 |
+
"# get unique values for column\n",
|
| 346 |
+
"x[\"Region Type\"].unique()"
|
| 347 |
+
]
|
| 348 |
+
},
|
| 349 |
+
{
|
| 350 |
+
"cell_type": "code",
|
| 351 |
+
"execution_count": 29,
|
| 352 |
+
"metadata": {},
|
| 353 |
+
"outputs": [
|
| 354 |
+
{
|
| 355 |
+
"data": {
|
| 356 |
+
"text/plain": [
|
| 357 |
+
"array(['all homes plus multifamily', 'SFR', 'multifamily'], dtype=object)"
|
| 358 |
+
]
|
| 359 |
+
},
|
| 360 |
+
"execution_count": 29,
|
| 361 |
+
"metadata": {},
|
| 362 |
+
"output_type": "execute_result"
|
| 363 |
+
}
|
| 364 |
+
],
|
| 365 |
+
"source": [
|
| 366 |
+
"x[\"Home Type\"].unique()"
|
| 367 |
+
]
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"cell_type": "code",
|
| 371 |
+
"execution_count": 15,
|
| 372 |
+
"metadata": {},
|
| 373 |
+
"outputs": [
|
| 374 |
+
{
|
| 375 |
+
"data": {
|
| 376 |
+
"text/plain": [
|
| 377 |
+
"array(['1-Bedroom', '2-Bedrooms', '3-Bedrooms', '4-Bedrooms',\n",
|
| 378 |
+
" '5+-Bedrooms', 'All Bedrooms'], dtype=object)"
|
| 379 |
+
]
|
| 380 |
+
},
|
| 381 |
+
"execution_count": 15,
|
| 382 |
+
"metadata": {},
|
| 383 |
+
"output_type": "execute_result"
|
| 384 |
+
}
|
| 385 |
+
],
|
| 386 |
+
"source": [
|
| 387 |
+
"x[\"Bedroom Count\"].unique()"
|
| 388 |
+
]
|
| 389 |
+
}
|
| 390 |
+
],
|
| 391 |
+
"metadata": {
|
| 392 |
+
"kernelspec": {
|
| 393 |
+
"display_name": "sta663",
|
| 394 |
+
"language": "python",
|
| 395 |
+
"name": "python3"
|
| 396 |
+
},
|
| 397 |
+
"language_info": {
|
| 398 |
+
"codemirror_mode": {
|
| 399 |
+
"name": "ipython",
|
| 400 |
+
"version": 3
|
| 401 |
+
},
|
| 402 |
+
"file_extension": ".py",
|
| 403 |
+
"mimetype": "text/x-python",
|
| 404 |
+
"name": "python",
|
| 405 |
+
"nbconvert_exporter": "python",
|
| 406 |
+
"pygments_lexer": "ipython3",
|
| 407 |
+
"version": "3.12.2"
|
| 408 |
+
}
|
| 409 |
+
},
|
| 410 |
+
"nbformat": 4,
|
| 411 |
+
"nbformat_minor": 2
|
| 412 |
+
}
|
processed/home_values_forecasts/final5.jsonl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a8627505370927a63475f06adf6470710cf92be0a1a2184497b56e8d00cabd56
|
| 3 |
+
size 14050125
|
processors/{home_value_forecasts.ipynb → home_values_forecasts.ipynb}
RENAMED
|
@@ -419,336 +419,19 @@
|
|
| 419 |
},
|
| 420 |
{
|
| 421 |
"cell_type": "code",
|
| 422 |
-
"execution_count":
|
| 423 |
"metadata": {},
|
| 424 |
"outputs": [
|
| 425 |
{
|
| 426 |
-
"
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
" vertical-align: top;\n",
|
| 436 |
-
" }\n",
|
| 437 |
-
"\n",
|
| 438 |
-
" .dataframe thead th {\n",
|
| 439 |
-
" text-align: right;\n",
|
| 440 |
-
" }\n",
|
| 441 |
-
"</style>\n",
|
| 442 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 443 |
-
" <thead>\n",
|
| 444 |
-
" <tr style=\"text-align: right;\">\n",
|
| 445 |
-
" <th></th>\n",
|
| 446 |
-
" <th>Region ID</th>\n",
|
| 447 |
-
" <th>Size Rank</th>\n",
|
| 448 |
-
" <th>Region</th>\n",
|
| 449 |
-
" <th>RegionType</th>\n",
|
| 450 |
-
" <th>State</th>\n",
|
| 451 |
-
" <th>City</th>\n",
|
| 452 |
-
" <th>Metro</th>\n",
|
| 453 |
-
" <th>County</th>\n",
|
| 454 |
-
" <th>Date</th>\n",
|
| 455 |
-
" <th>Month Over Month % (Smoothed) (Seasonally Adjusted)</th>\n",
|
| 456 |
-
" <th>Quarter Over Quarter % (Smoothed) (Seasonally Adjusted)</th>\n",
|
| 457 |
-
" <th>Year Over Year % (Smoothed) (Seasonally Adjusted)</th>\n",
|
| 458 |
-
" <th>Month Over Month %</th>\n",
|
| 459 |
-
" <th>Quarter Over Quarter %</th>\n",
|
| 460 |
-
" <th>Year Over Year %</th>\n",
|
| 461 |
-
" </tr>\n",
|
| 462 |
-
" </thead>\n",
|
| 463 |
-
" <tbody>\n",
|
| 464 |
-
" <tr>\n",
|
| 465 |
-
" <th>0</th>\n",
|
| 466 |
-
" <td>58001</td>\n",
|
| 467 |
-
" <td>30490</td>\n",
|
| 468 |
-
" <td>501</td>\n",
|
| 469 |
-
" <td>zip</td>\n",
|
| 470 |
-
" <td>NY</td>\n",
|
| 471 |
-
" <td>Holtsville</td>\n",
|
| 472 |
-
" <td>New York-Newark-Jersey City, NY-NJ-PA</td>\n",
|
| 473 |
-
" <td>Suffolk County</td>\n",
|
| 474 |
-
" <td>2023-12-31</td>\n",
|
| 475 |
-
" <td>NaN</td>\n",
|
| 476 |
-
" <td>NaN</td>\n",
|
| 477 |
-
" <td>NaN</td>\n",
|
| 478 |
-
" <td>-0.7</td>\n",
|
| 479 |
-
" <td>-0.9</td>\n",
|
| 480 |
-
" <td>0.6</td>\n",
|
| 481 |
-
" </tr>\n",
|
| 482 |
-
" <tr>\n",
|
| 483 |
-
" <th>1</th>\n",
|
| 484 |
-
" <td>58002</td>\n",
|
| 485 |
-
" <td>30490</td>\n",
|
| 486 |
-
" <td>544</td>\n",
|
| 487 |
-
" <td>zip</td>\n",
|
| 488 |
-
" <td>NY</td>\n",
|
| 489 |
-
" <td>Holtsville</td>\n",
|
| 490 |
-
" <td>New York-Newark-Jersey City, NY-NJ-PA</td>\n",
|
| 491 |
-
" <td>Suffolk County</td>\n",
|
| 492 |
-
" <td>2023-12-31</td>\n",
|
| 493 |
-
" <td>NaN</td>\n",
|
| 494 |
-
" <td>NaN</td>\n",
|
| 495 |
-
" <td>NaN</td>\n",
|
| 496 |
-
" <td>-0.7</td>\n",
|
| 497 |
-
" <td>-0.9</td>\n",
|
| 498 |
-
" <td>0.6</td>\n",
|
| 499 |
-
" </tr>\n",
|
| 500 |
-
" <tr>\n",
|
| 501 |
-
" <th>2</th>\n",
|
| 502 |
-
" <td>58196</td>\n",
|
| 503 |
-
" <td>7440</td>\n",
|
| 504 |
-
" <td>1001</td>\n",
|
| 505 |
-
" <td>zip</td>\n",
|
| 506 |
-
" <td>MA</td>\n",
|
| 507 |
-
" <td>Agawam</td>\n",
|
| 508 |
-
" <td>Springfield, MA</td>\n",
|
| 509 |
-
" <td>Hampden County</td>\n",
|
| 510 |
-
" <td>2023-12-31</td>\n",
|
| 511 |
-
" <td>0.4</td>\n",
|
| 512 |
-
" <td>0.9</td>\n",
|
| 513 |
-
" <td>3.2</td>\n",
|
| 514 |
-
" <td>-0.6</td>\n",
|
| 515 |
-
" <td>0.0</td>\n",
|
| 516 |
-
" <td>3.0</td>\n",
|
| 517 |
-
" </tr>\n",
|
| 518 |
-
" <tr>\n",
|
| 519 |
-
" <th>3</th>\n",
|
| 520 |
-
" <td>58197</td>\n",
|
| 521 |
-
" <td>3911</td>\n",
|
| 522 |
-
" <td>1002</td>\n",
|
| 523 |
-
" <td>zip</td>\n",
|
| 524 |
-
" <td>MA</td>\n",
|
| 525 |
-
" <td>Amherst</td>\n",
|
| 526 |
-
" <td>Springfield, MA</td>\n",
|
| 527 |
-
" <td>Hampshire County</td>\n",
|
| 528 |
-
" <td>2023-12-31</td>\n",
|
| 529 |
-
" <td>0.2</td>\n",
|
| 530 |
-
" <td>0.7</td>\n",
|
| 531 |
-
" <td>2.7</td>\n",
|
| 532 |
-
" <td>-0.6</td>\n",
|
| 533 |
-
" <td>0.0</td>\n",
|
| 534 |
-
" <td>2.9</td>\n",
|
| 535 |
-
" </tr>\n",
|
| 536 |
-
" <tr>\n",
|
| 537 |
-
" <th>4</th>\n",
|
| 538 |
-
" <td>58198</td>\n",
|
| 539 |
-
" <td>8838</td>\n",
|
| 540 |
-
" <td>1003</td>\n",
|
| 541 |
-
" <td>zip</td>\n",
|
| 542 |
-
" <td>MA</td>\n",
|
| 543 |
-
" <td>Amherst</td>\n",
|
| 544 |
-
" <td>Springfield, MA</td>\n",
|
| 545 |
-
" <td>Hampshire County</td>\n",
|
| 546 |
-
" <td>2023-12-31</td>\n",
|
| 547 |
-
" <td>NaN</td>\n",
|
| 548 |
-
" <td>NaN</td>\n",
|
| 549 |
-
" <td>NaN</td>\n",
|
| 550 |
-
" <td>-0.7</td>\n",
|
| 551 |
-
" <td>0.0</td>\n",
|
| 552 |
-
" <td>3.4</td>\n",
|
| 553 |
-
" </tr>\n",
|
| 554 |
-
" <tr>\n",
|
| 555 |
-
" <th>...</th>\n",
|
| 556 |
-
" <td>...</td>\n",
|
| 557 |
-
" <td>...</td>\n",
|
| 558 |
-
" <td>...</td>\n",
|
| 559 |
-
" <td>...</td>\n",
|
| 560 |
-
" <td>...</td>\n",
|
| 561 |
-
" <td>...</td>\n",
|
| 562 |
-
" <td>...</td>\n",
|
| 563 |
-
" <td>...</td>\n",
|
| 564 |
-
" <td>...</td>\n",
|
| 565 |
-
" <td>...</td>\n",
|
| 566 |
-
" <td>...</td>\n",
|
| 567 |
-
" <td>...</td>\n",
|
| 568 |
-
" <td>...</td>\n",
|
| 569 |
-
" <td>...</td>\n",
|
| 570 |
-
" <td>...</td>\n",
|
| 571 |
-
" </tr>\n",
|
| 572 |
-
" <tr>\n",
|
| 573 |
-
" <th>31849</th>\n",
|
| 574 |
-
" <td>827279</td>\n",
|
| 575 |
-
" <td>7779</td>\n",
|
| 576 |
-
" <td>72405</td>\n",
|
| 577 |
-
" <td>zip</td>\n",
|
| 578 |
-
" <td>AR</td>\n",
|
| 579 |
-
" <td>Jonesboro</td>\n",
|
| 580 |
-
" <td>Jonesboro, AR</td>\n",
|
| 581 |
-
" <td>Craighead County</td>\n",
|
| 582 |
-
" <td>2023-12-31</td>\n",
|
| 583 |
-
" <td>NaN</td>\n",
|
| 584 |
-
" <td>NaN</td>\n",
|
| 585 |
-
" <td>NaN</td>\n",
|
| 586 |
-
" <td>-0.7</td>\n",
|
| 587 |
-
" <td>0.0</td>\n",
|
| 588 |
-
" <td>2.5</td>\n",
|
| 589 |
-
" </tr>\n",
|
| 590 |
-
" <tr>\n",
|
| 591 |
-
" <th>31850</th>\n",
|
| 592 |
-
" <td>834213</td>\n",
|
| 593 |
-
" <td>30490</td>\n",
|
| 594 |
-
" <td>11437</td>\n",
|
| 595 |
-
" <td>zip</td>\n",
|
| 596 |
-
" <td>NY</td>\n",
|
| 597 |
-
" <td>New York</td>\n",
|
| 598 |
-
" <td>New York-Newark-Jersey City, NY-NJ-PA</td>\n",
|
| 599 |
-
" <td>Queens County</td>\n",
|
| 600 |
-
" <td>2023-12-31</td>\n",
|
| 601 |
-
" <td>NaN</td>\n",
|
| 602 |
-
" <td>NaN</td>\n",
|
| 603 |
-
" <td>NaN</td>\n",
|
| 604 |
-
" <td>-0.7</td>\n",
|
| 605 |
-
" <td>-0.9</td>\n",
|
| 606 |
-
" <td>0.6</td>\n",
|
| 607 |
-
" </tr>\n",
|
| 608 |
-
" <tr>\n",
|
| 609 |
-
" <th>31851</th>\n",
|
| 610 |
-
" <td>845914</td>\n",
|
| 611 |
-
" <td>6361</td>\n",
|
| 612 |
-
" <td>85288</td>\n",
|
| 613 |
-
" <td>zip</td>\n",
|
| 614 |
-
" <td>AZ</td>\n",
|
| 615 |
-
" <td>Tempe</td>\n",
|
| 616 |
-
" <td>Phoenix-Mesa-Chandler, AZ</td>\n",
|
| 617 |
-
" <td>Maricopa County</td>\n",
|
| 618 |
-
" <td>2023-12-31</td>\n",
|
| 619 |
-
" <td>NaN</td>\n",
|
| 620 |
-
" <td>NaN</td>\n",
|
| 621 |
-
" <td>NaN</td>\n",
|
| 622 |
-
" <td>-1.0</td>\n",
|
| 623 |
-
" <td>0.0</td>\n",
|
| 624 |
-
" <td>4.5</td>\n",
|
| 625 |
-
" </tr>\n",
|
| 626 |
-
" <tr>\n",
|
| 627 |
-
" <th>31852</th>\n",
|
| 628 |
-
" <td>847854</td>\n",
|
| 629 |
-
" <td>39992</td>\n",
|
| 630 |
-
" <td>20598</td>\n",
|
| 631 |
-
" <td>zip</td>\n",
|
| 632 |
-
" <td>VA</td>\n",
|
| 633 |
-
" <td>Arlington</td>\n",
|
| 634 |
-
" <td>Washington-Arlington-Alexandria, DC-VA-MD-WV</td>\n",
|
| 635 |
-
" <td>Arlington County</td>\n",
|
| 636 |
-
" <td>2023-12-31</td>\n",
|
| 637 |
-
" <td>NaN</td>\n",
|
| 638 |
-
" <td>NaN</td>\n",
|
| 639 |
-
" <td>NaN</td>\n",
|
| 640 |
-
" <td>-0.4</td>\n",
|
| 641 |
-
" <td>0.9</td>\n",
|
| 642 |
-
" <td>1.2</td>\n",
|
| 643 |
-
" </tr>\n",
|
| 644 |
-
" <tr>\n",
|
| 645 |
-
" <th>31853</th>\n",
|
| 646 |
-
" <td>847855</td>\n",
|
| 647 |
-
" <td>30490</td>\n",
|
| 648 |
-
" <td>34249</td>\n",
|
| 649 |
-
" <td>zip</td>\n",
|
| 650 |
-
" <td>FL</td>\n",
|
| 651 |
-
" <td>Sarasota</td>\n",
|
| 652 |
-
" <td>North Port-Sarasota-Bradenton, FL</td>\n",
|
| 653 |
-
" <td>Sarasota County</td>\n",
|
| 654 |
-
" <td>2023-12-31</td>\n",
|
| 655 |
-
" <td>NaN</td>\n",
|
| 656 |
-
" <td>NaN</td>\n",
|
| 657 |
-
" <td>NaN</td>\n",
|
| 658 |
-
" <td>-0.9</td>\n",
|
| 659 |
-
" <td>-0.1</td>\n",
|
| 660 |
-
" <td>5.4</td>\n",
|
| 661 |
-
" </tr>\n",
|
| 662 |
-
" </tbody>\n",
|
| 663 |
-
"</table>\n",
|
| 664 |
-
"<p>31854 rows × 15 columns</p>\n",
|
| 665 |
-
"</div>"
|
| 666 |
-
],
|
| 667 |
-
"text/plain": [
|
| 668 |
-
" Region ID Size Rank Region RegionType State City \\\n",
|
| 669 |
-
"0 58001 30490 501 zip NY Holtsville \n",
|
| 670 |
-
"1 58002 30490 544 zip NY Holtsville \n",
|
| 671 |
-
"2 58196 7440 1001 zip MA Agawam \n",
|
| 672 |
-
"3 58197 3911 1002 zip MA Amherst \n",
|
| 673 |
-
"4 58198 8838 1003 zip MA Amherst \n",
|
| 674 |
-
"... ... ... ... ... ... ... \n",
|
| 675 |
-
"31849 827279 7779 72405 zip AR Jonesboro \n",
|
| 676 |
-
"31850 834213 30490 11437 zip NY New York \n",
|
| 677 |
-
"31851 845914 6361 85288 zip AZ Tempe \n",
|
| 678 |
-
"31852 847854 39992 20598 zip VA Arlington \n",
|
| 679 |
-
"31853 847855 30490 34249 zip FL Sarasota \n",
|
| 680 |
-
"\n",
|
| 681 |
-
" Metro County \\\n",
|
| 682 |
-
"0 New York-Newark-Jersey City, NY-NJ-PA Suffolk County \n",
|
| 683 |
-
"1 New York-Newark-Jersey City, NY-NJ-PA Suffolk County \n",
|
| 684 |
-
"2 Springfield, MA Hampden County \n",
|
| 685 |
-
"3 Springfield, MA Hampshire County \n",
|
| 686 |
-
"4 Springfield, MA Hampshire County \n",
|
| 687 |
-
"... ... ... \n",
|
| 688 |
-
"31849 Jonesboro, AR Craighead County \n",
|
| 689 |
-
"31850 New York-Newark-Jersey City, NY-NJ-PA Queens County \n",
|
| 690 |
-
"31851 Phoenix-Mesa-Chandler, AZ Maricopa County \n",
|
| 691 |
-
"31852 Washington-Arlington-Alexandria, DC-VA-MD-WV Arlington County \n",
|
| 692 |
-
"31853 North Port-Sarasota-Bradenton, FL Sarasota County \n",
|
| 693 |
-
"\n",
|
| 694 |
-
" Date Month Over Month % (Smoothed) (Seasonally Adjusted) \\\n",
|
| 695 |
-
"0 2023-12-31 NaN \n",
|
| 696 |
-
"1 2023-12-31 NaN \n",
|
| 697 |
-
"2 2023-12-31 0.4 \n",
|
| 698 |
-
"3 2023-12-31 0.2 \n",
|
| 699 |
-
"4 2023-12-31 NaN \n",
|
| 700 |
-
"... ... ... \n",
|
| 701 |
-
"31849 2023-12-31 NaN \n",
|
| 702 |
-
"31850 2023-12-31 NaN \n",
|
| 703 |
-
"31851 2023-12-31 NaN \n",
|
| 704 |
-
"31852 2023-12-31 NaN \n",
|
| 705 |
-
"31853 2023-12-31 NaN \n",
|
| 706 |
-
"\n",
|
| 707 |
-
" Quarter Over Quarter % (Smoothed) (Seasonally Adjusted) \\\n",
|
| 708 |
-
"0 NaN \n",
|
| 709 |
-
"1 NaN \n",
|
| 710 |
-
"2 0.9 \n",
|
| 711 |
-
"3 0.7 \n",
|
| 712 |
-
"4 NaN \n",
|
| 713 |
-
"... ... \n",
|
| 714 |
-
"31849 NaN \n",
|
| 715 |
-
"31850 NaN \n",
|
| 716 |
-
"31851 NaN \n",
|
| 717 |
-
"31852 NaN \n",
|
| 718 |
-
"31853 NaN \n",
|
| 719 |
-
"\n",
|
| 720 |
-
" Year Over Year % (Smoothed) (Seasonally Adjusted) Month Over Month % \\\n",
|
| 721 |
-
"0 NaN -0.7 \n",
|
| 722 |
-
"1 NaN -0.7 \n",
|
| 723 |
-
"2 3.2 -0.6 \n",
|
| 724 |
-
"3 2.7 -0.6 \n",
|
| 725 |
-
"4 NaN -0.7 \n",
|
| 726 |
-
"... ... ... \n",
|
| 727 |
-
"31849 NaN -0.7 \n",
|
| 728 |
-
"31850 NaN -0.7 \n",
|
| 729 |
-
"31851 NaN -1.0 \n",
|
| 730 |
-
"31852 NaN -0.4 \n",
|
| 731 |
-
"31853 NaN -0.9 \n",
|
| 732 |
-
"\n",
|
| 733 |
-
" Quarter Over Quarter % Year Over Year % \n",
|
| 734 |
-
"0 -0.9 0.6 \n",
|
| 735 |
-
"1 -0.9 0.6 \n",
|
| 736 |
-
"2 0.0 3.0 \n",
|
| 737 |
-
"3 0.0 2.9 \n",
|
| 738 |
-
"4 0.0 3.4 \n",
|
| 739 |
-
"... ... ... \n",
|
| 740 |
-
"31849 0.0 2.5 \n",
|
| 741 |
-
"31850 -0.9 0.6 \n",
|
| 742 |
-
"31851 0.0 4.5 \n",
|
| 743 |
-
"31852 0.9 1.2 \n",
|
| 744 |
-
"31853 -0.1 5.4 \n",
|
| 745 |
-
"\n",
|
| 746 |
-
"[31854 rows x 15 columns]"
|
| 747 |
-
]
|
| 748 |
-
},
|
| 749 |
-
"execution_count": 4,
|
| 750 |
-
"metadata": {},
|
| 751 |
-
"output_type": "execute_result"
|
| 752 |
}
|
| 753 |
],
|
| 754 |
"source": [
|
|
@@ -760,6 +443,7 @@
|
|
| 760 |
" \"CountyName\": \"County\",\n",
|
| 761 |
" \"BaseDate\": \"Date\",\n",
|
| 762 |
" \"RegionName\": \"Region\",\n",
|
|
|
|
| 763 |
" \"RegionID\": \"Region ID\",\n",
|
| 764 |
" \"SizeRank\": \"Size Rank\",\n",
|
| 765 |
" }\n",
|
|
@@ -767,7 +451,7 @@
|
|
| 767 |
"\n",
|
| 768 |
"# iterate over rows of final_df and populate State and City columns if the regionType is msa\n",
|
| 769 |
"for index, row in final_df.iterrows():\n",
|
| 770 |
-
" if row[\"
|
| 771 |
" regionName = row[\"Region\"]\n",
|
| 772 |
" # final_df.at[index, 'Metro'] = regionName\n",
|
| 773 |
"\n",
|
|
|
|
| 419 |
},
|
| 420 |
{
|
| 421 |
"cell_type": "code",
|
| 422 |
+
"execution_count": 1,
|
| 423 |
"metadata": {},
|
| 424 |
"outputs": [
|
| 425 |
{
|
| 426 |
+
"ename": "NameError",
|
| 427 |
+
"evalue": "name 'combined_df' is not defined",
|
| 428 |
+
"output_type": "error",
|
| 429 |
+
"traceback": [
|
| 430 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 431 |
+
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
| 432 |
+
"Cell \u001b[0;32mIn[1], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Adjust columns\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m final_df \u001b[38;5;241m=\u001b[39m \u001b[43mcombined_df\u001b[49m\n\u001b[1;32m 3\u001b[0m final_df \u001b[38;5;241m=\u001b[39m combined_df\u001b[38;5;241m.\u001b[39mdrop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mStateName\u001b[39m\u001b[38;5;124m\"\u001b[39m, axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m 4\u001b[0m final_df \u001b[38;5;241m=\u001b[39m final_df\u001b[38;5;241m.\u001b[39mrename(\n\u001b[1;32m 5\u001b[0m columns\u001b[38;5;241m=\u001b[39m{\n\u001b[1;32m 6\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCountyName\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCounty\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 11\u001b[0m }\n\u001b[1;32m 12\u001b[0m )\n",
|
| 433 |
+
"\u001b[0;31mNameError\u001b[0m: name 'combined_df' is not defined"
|
| 434 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
}
|
| 436 |
],
|
| 437 |
"source": [
|
|
|
|
| 443 |
" \"CountyName\": \"County\",\n",
|
| 444 |
" \"BaseDate\": \"Date\",\n",
|
| 445 |
" \"RegionName\": \"Region\",\n",
|
| 446 |
+
" \"RegionType\": \"Region Type\",\n",
|
| 447 |
" \"RegionID\": \"Region ID\",\n",
|
| 448 |
" \"SizeRank\": \"Size Rank\",\n",
|
| 449 |
" }\n",
|
|
|
|
| 451 |
"\n",
|
| 452 |
"# iterate over rows of final_df and populate State and City columns if the regionType is msa\n",
|
| 453 |
"for index, row in final_df.iterrows():\n",
|
| 454 |
+
" if row[\"Region Type\"] == \"msa\":\n",
|
| 455 |
" regionName = row[\"Region\"]\n",
|
| 456 |
" # final_df.at[index, 'Metro'] = regionName\n",
|
| 457 |
"\n",
|
processors/{home_value_forecasts.py → home_values_forecasts.py}
RENAMED
|
@@ -69,6 +69,7 @@ final_df = final_df.rename(
|
|
| 69 |
"CountyName": "County",
|
| 70 |
"BaseDate": "Date",
|
| 71 |
"RegionName": "Region",
|
|
|
|
| 72 |
"RegionID": "Region ID",
|
| 73 |
"SizeRank": "Size Rank",
|
| 74 |
}
|
|
@@ -76,7 +77,7 @@ final_df = final_df.rename(
|
|
| 76 |
|
| 77 |
# iterate over rows of final_df and populate State and City columns if the regionType is msa
|
| 78 |
for index, row in final_df.iterrows():
|
| 79 |
-
if row["
|
| 80 |
regionName = row["Region"]
|
| 81 |
# final_df.at[index, 'Metro'] = regionName
|
| 82 |
|
|
|
|
| 69 |
"CountyName": "County",
|
| 70 |
"BaseDate": "Date",
|
| 71 |
"RegionName": "Region",
|
| 72 |
+
"RegionType": "Region Type",
|
| 73 |
"RegionID": "Region ID",
|
| 74 |
"SizeRank": "Size Rank",
|
| 75 |
}
|
|
|
|
| 77 |
|
| 78 |
# iterate over rows of final_df and populate State and City columns if the regionType is msa
|
| 79 |
for index, row in final_df.iterrows():
|
| 80 |
+
if row["Region Type"] == "msa":
|
| 81 |
regionName = row["Region"]
|
| 82 |
# final_df.at[index, 'Metro'] = regionName
|
| 83 |
|
zillow.py
CHANGED
|
@@ -88,7 +88,9 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
| 88 |
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
| 89 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
| 90 |
"Region": datasets.Value(dtype="string", id="Region"),
|
| 91 |
-
"
|
|
|
|
|
|
|
| 92 |
"State": datasets.Value(dtype="string", id="State"),
|
| 93 |
"City": datasets.Value(dtype="string", id="City"),
|
| 94 |
"Metro": datasets.Value(dtype="string", id="Metro"),
|
|
@@ -123,9 +125,13 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
| 123 |
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
| 124 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
| 125 |
"Region": datasets.Value(dtype="string", id="Region"),
|
| 126 |
-
"Region Type": datasets.
|
|
|
|
|
|
|
| 127 |
"State": datasets.Value(dtype="string", id="State"),
|
| 128 |
-
"Home Type": datasets.
|
|
|
|
|
|
|
| 129 |
"Date": datasets.Value(dtype="string", id="Date"),
|
| 130 |
"Median Sale Price": datasets.Value(
|
| 131 |
dtype="float32", id="Median Sale Price"
|
|
@@ -142,9 +148,13 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
| 142 |
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
| 143 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
| 144 |
"Region": datasets.Value(dtype="string", id="Region"),
|
| 145 |
-
"Region Type": datasets.
|
|
|
|
|
|
|
| 146 |
"State": datasets.Value(dtype="string", id="State"),
|
| 147 |
-
"Home Type": datasets.
|
|
|
|
|
|
|
| 148 |
"Date": datasets.Value(dtype="string", id="Date"),
|
| 149 |
"Median Listing Price": datasets.Value(
|
| 150 |
dtype="float32", id="Median Listing Price"
|
|
@@ -168,9 +178,14 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
| 168 |
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
| 169 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
| 170 |
"Region": datasets.Value(dtype="string", id="Region"),
|
| 171 |
-
"Region Type": datasets.
|
|
|
|
|
|
|
| 172 |
"State": datasets.Value(dtype="string", id="State"),
|
| 173 |
-
"Home Type": datasets.
|
|
|
|
|
|
|
|
|
|
| 174 |
"Date": datasets.Value(dtype="string", id="Date"),
|
| 175 |
"Rent (Smoothed)": datasets.Value(
|
| 176 |
dtype="float32", id="Rent (Smoothed)"
|
|
@@ -186,9 +201,14 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
| 186 |
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
| 187 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
| 188 |
"Region": datasets.Value(dtype="string", id="Region"),
|
| 189 |
-
"Region Type": datasets.
|
|
|
|
|
|
|
| 190 |
"State": datasets.Value(dtype="string", id="State"),
|
| 191 |
-
"Home Type": datasets.
|
|
|
|
|
|
|
|
|
|
| 192 |
"Date": datasets.Value(dtype="string", id="Date"),
|
| 193 |
"Mean Sale to List Ratio (Smoothed)": datasets.Value(
|
| 194 |
dtype="float32", id="Mean Sale to List Ratio (Smoothed)"
|
|
@@ -232,9 +252,22 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
| 232 |
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
| 233 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
| 234 |
"Region": datasets.Value(dtype="string", id="Region"),
|
| 235 |
-
"Region Type": datasets.
|
| 236 |
"State": datasets.Value(dtype="string", id="State"),
|
| 237 |
-
"Home Type": datasets.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
"Date": datasets.Value(dtype="string", id="Date"),
|
| 239 |
"Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)": datasets.Value(
|
| 240 |
dtype="float32",
|
|
@@ -261,7 +294,10 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
| 261 |
num_classes=2, names=["country", "msa"]
|
| 262 |
),
|
| 263 |
"State": datasets.Value(dtype="string", id="State"),
|
| 264 |
-
"Home Type": datasets.Value(dtype="string", id="Home Type"),
|
|
|
|
|
|
|
|
|
|
| 265 |
"Date": datasets.Value(dtype="string", id="Date"),
|
| 266 |
"Mean Listings Price Cut Amount (Smoothed)": datasets.Value(
|
| 267 |
dtype="float32", id="Mean Listings Price Cut Amount (Smoothed)"
|
|
@@ -342,7 +378,7 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
| 342 |
"Region ID": data["Region ID"],
|
| 343 |
"Size Rank": data["Size Rank"],
|
| 344 |
"Region": data["Region"],
|
| 345 |
-
"
|
| 346 |
"State": data["State"],
|
| 347 |
"City": data["City"],
|
| 348 |
"Metro": data["Metro"],
|
|
@@ -449,6 +485,7 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
| 449 |
"Region Type": data["Region Type"],
|
| 450 |
"State": data["State"],
|
| 451 |
"Home Type": data["Home Type"],
|
|
|
|
| 452 |
"Date": data["Date"],
|
| 453 |
"Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)": data[
|
| 454 |
"Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)"
|
|
|
|
| 88 |
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
| 89 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
| 90 |
"Region": datasets.Value(dtype="string", id="Region"),
|
| 91 |
+
"Region Type": datasets.ClassLabel(
|
| 92 |
+
num_classes=3, names=["zip", "country", "msa"]
|
| 93 |
+
),
|
| 94 |
"State": datasets.Value(dtype="string", id="State"),
|
| 95 |
"City": datasets.Value(dtype="string", id="City"),
|
| 96 |
"Metro": datasets.Value(dtype="string", id="Metro"),
|
|
|
|
| 125 |
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
| 126 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
| 127 |
"Region": datasets.Value(dtype="string", id="Region"),
|
| 128 |
+
"Region Type": datasets.ClassLabel(
|
| 129 |
+
num_classes=2, names=["country", "msa"]
|
| 130 |
+
),
|
| 131 |
"State": datasets.Value(dtype="string", id="State"),
|
| 132 |
+
"Home Type": datasets.ClassLabel(
|
| 133 |
+
num_classes=3, names=["SFR", "all homes", "condo/co-op only"]
|
| 134 |
+
),
|
| 135 |
"Date": datasets.Value(dtype="string", id="Date"),
|
| 136 |
"Median Sale Price": datasets.Value(
|
| 137 |
dtype="float32", id="Median Sale Price"
|
|
|
|
| 148 |
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
| 149 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
| 150 |
"Region": datasets.Value(dtype="string", id="Region"),
|
| 151 |
+
"Region Type": datasets.ClassLabel(
|
| 152 |
+
num_classes=2, names=["country", "msa"]
|
| 153 |
+
),
|
| 154 |
"State": datasets.Value(dtype="string", id="State"),
|
| 155 |
+
"Home Type": datasets.ClassLabel(
|
| 156 |
+
num_classes=2, names=["SFR", "all homes"]
|
| 157 |
+
),
|
| 158 |
"Date": datasets.Value(dtype="string", id="Date"),
|
| 159 |
"Median Listing Price": datasets.Value(
|
| 160 |
dtype="float32", id="Median Listing Price"
|
|
|
|
| 178 |
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
| 179 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
| 180 |
"Region": datasets.Value(dtype="string", id="Region"),
|
| 181 |
+
"Region Type": datasets.ClassLabel(
|
| 182 |
+
num_classes=5, names=["county", "city", "zip", "country", "msa"]
|
| 183 |
+
),
|
| 184 |
"State": datasets.Value(dtype="string", id="State"),
|
| 185 |
+
"Home Type": datasets.ClassLabel(
|
| 186 |
+
num_classes=3,
|
| 187 |
+
names=["all homes plus multifamily", "SFR", "multifamily"],
|
| 188 |
+
),
|
| 189 |
"Date": datasets.Value(dtype="string", id="Date"),
|
| 190 |
"Rent (Smoothed)": datasets.Value(
|
| 191 |
dtype="float32", id="Rent (Smoothed)"
|
|
|
|
| 201 |
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
| 202 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
| 203 |
"Region": datasets.Value(dtype="string", id="Region"),
|
| 204 |
+
"Region Type": datasets.ClassLabel(
|
| 205 |
+
num_classes=2, names=["country", "msa"]
|
| 206 |
+
),
|
| 207 |
"State": datasets.Value(dtype="string", id="State"),
|
| 208 |
+
"Home Type": datasets.ClassLabel(
|
| 209 |
+
num_classes=2,
|
| 210 |
+
names=["SFR", "all homes"],
|
| 211 |
+
),
|
| 212 |
"Date": datasets.Value(dtype="string", id="Date"),
|
| 213 |
"Mean Sale to List Ratio (Smoothed)": datasets.Value(
|
| 214 |
dtype="float32", id="Mean Sale to List Ratio (Smoothed)"
|
|
|
|
| 252 |
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
| 253 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
| 254 |
"Region": datasets.Value(dtype="string", id="Region"),
|
| 255 |
+
"Region Type": datasets.ClassLabel(num_classes=1, names=["state"]),
|
| 256 |
"State": datasets.Value(dtype="string", id="State"),
|
| 257 |
+
"Home Type": datasets.ClassLabel(
|
| 258 |
+
num_classes=3, names=["all homes (SFR/condo)", "SFR", "condo"]
|
| 259 |
+
),
|
| 260 |
+
"Bedroom Count": datasets.ClassLabel(
|
| 261 |
+
num_classes=6,
|
| 262 |
+
names=[
|
| 263 |
+
"1-Bedroom",
|
| 264 |
+
"2-Bedrooms",
|
| 265 |
+
"3-Bedrooms",
|
| 266 |
+
"4-Bedrooms",
|
| 267 |
+
"5+-Bedrooms",
|
| 268 |
+
"All Bedrooms",
|
| 269 |
+
],
|
| 270 |
+
),
|
| 271 |
"Date": datasets.Value(dtype="string", id="Date"),
|
| 272 |
"Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)": datasets.Value(
|
| 273 |
dtype="float32",
|
|
|
|
| 294 |
num_classes=2, names=["country", "msa"]
|
| 295 |
),
|
| 296 |
"State": datasets.Value(dtype="string", id="State"),
|
| 297 |
+
# "Home Type": datasets.Value(dtype="string", id="Home Type"),
|
| 298 |
+
"Home Type": datasets.ClassLabel(
|
| 299 |
+
num_classes=2, names=["SFR", "all homes (SFR + Condo)"]
|
| 300 |
+
),
|
| 301 |
"Date": datasets.Value(dtype="string", id="Date"),
|
| 302 |
"Mean Listings Price Cut Amount (Smoothed)": datasets.Value(
|
| 303 |
dtype="float32", id="Mean Listings Price Cut Amount (Smoothed)"
|
|
|
|
| 378 |
"Region ID": data["Region ID"],
|
| 379 |
"Size Rank": data["Size Rank"],
|
| 380 |
"Region": data["Region"],
|
| 381 |
+
"Region Type": data["Region Type"],
|
| 382 |
"State": data["State"],
|
| 383 |
"City": data["City"],
|
| 384 |
"Metro": data["Metro"],
|
|
|
|
| 485 |
"Region Type": data["Region Type"],
|
| 486 |
"State": data["State"],
|
| 487 |
"Home Type": data["Home Type"],
|
| 488 |
+
"Bedroom Count": data["Bedroom Count"],
|
| 489 |
"Date": data["Date"],
|
| 490 |
"Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)": data[
|
| 491 |
"Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)"
|