feat: add config for for sale listings
Browse files- processors/process_for_sale_listings.ipynb +7 -7
- processors/process_new_constructions.ipynb +7 -7
- tester.ipynb +22 -34
- zillow.py +52 -0
processors/process_for_sale_listings.ipynb
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
@@ -12,7 +12,7 @@
|
|
| 12 |
},
|
| 13 |
{
|
| 14 |
"cell_type": "code",
|
| 15 |
-
"execution_count":
|
| 16 |
"metadata": {},
|
| 17 |
"outputs": [],
|
| 18 |
"source": [
|
|
@@ -25,7 +25,7 @@
|
|
| 25 |
},
|
| 26 |
{
|
| 27 |
"cell_type": "code",
|
| 28 |
-
"execution_count":
|
| 29 |
"metadata": {},
|
| 30 |
"outputs": [
|
| 31 |
{
|
|
@@ -332,7 +332,7 @@
|
|
| 332 |
"[2398149 rows x 13 columns]"
|
| 333 |
]
|
| 334 |
},
|
| 335 |
-
"execution_count":
|
| 336 |
"metadata": {},
|
| 337 |
"output_type": "execute_result"
|
| 338 |
}
|
|
@@ -436,7 +436,7 @@
|
|
| 436 |
},
|
| 437 |
{
|
| 438 |
"cell_type": "code",
|
| 439 |
-
"execution_count":
|
| 440 |
"metadata": {},
|
| 441 |
"outputs": [
|
| 442 |
{
|
|
@@ -713,7 +713,7 @@
|
|
| 713 |
"[2398149 rows x 13 columns]"
|
| 714 |
]
|
| 715 |
},
|
| 716 |
-
"execution_count":
|
| 717 |
"metadata": {},
|
| 718 |
"output_type": "execute_result"
|
| 719 |
}
|
|
@@ -735,7 +735,7 @@
|
|
| 735 |
},
|
| 736 |
{
|
| 737 |
"cell_type": "code",
|
| 738 |
-
"execution_count":
|
| 739 |
"metadata": {},
|
| 740 |
"outputs": [],
|
| 741 |
"source": [
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 8,
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
|
|
| 12 |
},
|
| 13 |
{
|
| 14 |
"cell_type": "code",
|
| 15 |
+
"execution_count": 9,
|
| 16 |
"metadata": {},
|
| 17 |
"outputs": [],
|
| 18 |
"source": [
|
|
|
|
| 25 |
},
|
| 26 |
{
|
| 27 |
"cell_type": "code",
|
| 28 |
+
"execution_count": 10,
|
| 29 |
"metadata": {},
|
| 30 |
"outputs": [
|
| 31 |
{
|
|
|
|
| 332 |
"[2398149 rows x 13 columns]"
|
| 333 |
]
|
| 334 |
},
|
| 335 |
+
"execution_count": 10,
|
| 336 |
"metadata": {},
|
| 337 |
"output_type": "execute_result"
|
| 338 |
}
|
|
|
|
| 436 |
},
|
| 437 |
{
|
| 438 |
"cell_type": "code",
|
| 439 |
+
"execution_count": 11,
|
| 440 |
"metadata": {},
|
| 441 |
"outputs": [
|
| 442 |
{
|
|
|
|
| 713 |
"[2398149 rows x 13 columns]"
|
| 714 |
]
|
| 715 |
},
|
| 716 |
+
"execution_count": 11,
|
| 717 |
"metadata": {},
|
| 718 |
"output_type": "execute_result"
|
| 719 |
}
|
|
|
|
| 735 |
},
|
| 736 |
{
|
| 737 |
"cell_type": "code",
|
| 738 |
+
"execution_count": 12,
|
| 739 |
"metadata": {},
|
| 740 |
"outputs": [],
|
| 741 |
"source": [
|
processors/process_new_constructions.ipynb
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
@@ -12,7 +12,7 @@
|
|
| 12 |
},
|
| 13 |
{
|
| 14 |
"cell_type": "code",
|
| 15 |
-
"execution_count":
|
| 16 |
"metadata": {},
|
| 17 |
"outputs": [],
|
| 18 |
"source": [
|
|
@@ -25,7 +25,7 @@
|
|
| 25 |
},
|
| 26 |
{
|
| 27 |
"cell_type": "code",
|
| 28 |
-
"execution_count":
|
| 29 |
"metadata": {},
|
| 30 |
"outputs": [
|
| 31 |
{
|
|
@@ -268,7 +268,7 @@
|
|
| 268 |
"[49487 rows x 10 columns]"
|
| 269 |
]
|
| 270 |
},
|
| 271 |
-
"execution_count":
|
| 272 |
"metadata": {},
|
| 273 |
"output_type": "execute_result"
|
| 274 |
}
|
|
@@ -360,7 +360,7 @@
|
|
| 360 |
},
|
| 361 |
{
|
| 362 |
"cell_type": "code",
|
| 363 |
-
"execution_count":
|
| 364 |
"metadata": {},
|
| 365 |
"outputs": [
|
| 366 |
{
|
|
@@ -588,7 +588,7 @@
|
|
| 588 |
"[49487 rows x 10 columns]"
|
| 589 |
]
|
| 590 |
},
|
| 591 |
-
"execution_count":
|
| 592 |
"metadata": {},
|
| 593 |
"output_type": "execute_result"
|
| 594 |
}
|
|
@@ -610,7 +610,7 @@
|
|
| 610 |
},
|
| 611 |
{
|
| 612 |
"cell_type": "code",
|
| 613 |
-
"execution_count":
|
| 614 |
"metadata": {},
|
| 615 |
"outputs": [],
|
| 616 |
"source": [
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 64,
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
|
|
| 12 |
},
|
| 13 |
{
|
| 14 |
"cell_type": "code",
|
| 15 |
+
"execution_count": 65,
|
| 16 |
"metadata": {},
|
| 17 |
"outputs": [],
|
| 18 |
"source": [
|
|
|
|
| 25 |
},
|
| 26 |
{
|
| 27 |
"cell_type": "code",
|
| 28 |
+
"execution_count": 66,
|
| 29 |
"metadata": {},
|
| 30 |
"outputs": [
|
| 31 |
{
|
|
|
|
| 268 |
"[49487 rows x 10 columns]"
|
| 269 |
]
|
| 270 |
},
|
| 271 |
+
"execution_count": 66,
|
| 272 |
"metadata": {},
|
| 273 |
"output_type": "execute_result"
|
| 274 |
}
|
|
|
|
| 360 |
},
|
| 361 |
{
|
| 362 |
"cell_type": "code",
|
| 363 |
+
"execution_count": 67,
|
| 364 |
"metadata": {},
|
| 365 |
"outputs": [
|
| 366 |
{
|
|
|
|
| 588 |
"[49487 rows x 10 columns]"
|
| 589 |
]
|
| 590 |
},
|
| 591 |
+
"execution_count": 67,
|
| 592 |
"metadata": {},
|
| 593 |
"output_type": "execute_result"
|
| 594 |
}
|
|
|
|
| 610 |
},
|
| 611 |
{
|
| 612 |
"cell_type": "code",
|
| 613 |
+
"execution_count": 68,
|
| 614 |
"metadata": {},
|
| 615 |
"outputs": [],
|
| 616 |
"source": [
|
tester.ipynb
CHANGED
|
@@ -22,46 +22,34 @@
|
|
| 22 |
},
|
| 23 |
{
|
| 24 |
"cell_type": "code",
|
| 25 |
-
"execution_count":
|
| 26 |
"metadata": {},
|
| 27 |
"outputs": [
|
| 28 |
{
|
| 29 |
-
"
|
| 30 |
-
"
|
| 31 |
-
"text": [
|
| 32 |
-
"Generating train split: 0 examples [00:00, ? examples/s]\n"
|
| 33 |
-
]
|
| 34 |
-
},
|
| 35 |
-
{
|
| 36 |
-
"ename": "DatasetGenerationError",
|
| 37 |
-
"evalue": "An error occurred while generating the dataset",
|
| 38 |
"output_type": "error",
|
| 39 |
"traceback": [
|
| 40 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 41 |
-
"\u001b[0;
|
| 42 |
-
"
|
| 43 |
-
"File \u001b[0;32m
|
| 44 |
-
"\u001b[0;
|
| 45 |
-
"\
|
| 46 |
-
"\u001b[0;
|
| 47 |
-
"
|
| 48 |
-
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/load.py:2574\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[0m\n\u001b[1;32m 2571\u001b[0m try_from_hf_gcs \u001b[38;5;241m=\u001b[39m path \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m _PACKAGED_DATASETS_MODULES\n\u001b[1;32m 2573\u001b[0m \u001b[38;5;66;03m# Download and prepare data\u001b[39;00m\n\u001b[0;32m-> 2574\u001b[0m \u001b[43mbuilder_instance\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdownload_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2575\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2576\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2577\u001b[0m \u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2578\u001b[0m \u001b[43m \u001b[49m\u001b[43mtry_from_hf_gcs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtry_from_hf_gcs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2579\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_proc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_proc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2580\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2581\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2583\u001b[0m \u001b[38;5;66;03m# Build dataset for splits\u001b[39;00m\n\u001b[1;32m 2584\u001b[0m keep_in_memory \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 2585\u001b[0m keep_in_memory \u001b[38;5;28;01mif\u001b[39;00m keep_in_memory \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m is_small_dataset(builder_instance\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39mdataset_size)\n\u001b[1;32m 2586\u001b[0m )\n",
|
| 49 |
-
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:1005\u001b[0m, in \u001b[0;36mDatasetBuilder.download_and_prepare\u001b[0;34m(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)\u001b[0m\n\u001b[1;32m 1003\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m num_proc \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 1004\u001b[0m prepare_split_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnum_proc\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m num_proc\n\u001b[0;32m-> 1005\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_download_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1006\u001b[0m \u001b[43m \u001b[49m\u001b[43mdl_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdl_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1007\u001b[0m \u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1008\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_split_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1009\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mdownload_and_prepare_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1010\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1011\u001b[0m \u001b[38;5;66;03m# Sync info\u001b[39;00m\n\u001b[1;32m 1012\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39mdataset_size \u001b[38;5;241m=\u001b[39m \u001b[38;5;28msum\u001b[39m(split\u001b[38;5;241m.\u001b[39mnum_bytes \u001b[38;5;28;01mfor\u001b[39;00m split \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39msplits\u001b[38;5;241m.\u001b[39mvalues())\n",
|
| 50 |
-
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:1767\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._download_and_prepare\u001b[0;34m(self, dl_manager, verification_mode, **prepare_splits_kwargs)\u001b[0m\n\u001b[1;32m 1766\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_download_and_prepare\u001b[39m(\u001b[38;5;28mself\u001b[39m, dl_manager, verification_mode, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mprepare_splits_kwargs):\n\u001b[0;32m-> 1767\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_download_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1768\u001b[0m \u001b[43m \u001b[49m\u001b[43mdl_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1769\u001b[0m \u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1770\u001b[0m \u001b[43m \u001b[49m\u001b[43mcheck_duplicate_keys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mVerificationMode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mBASIC_CHECKS\u001b[49m\n\u001b[1;32m 1771\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mVerificationMode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mALL_CHECKS\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1772\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_splits_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1773\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
|
| 51 |
-
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:1100\u001b[0m, in \u001b[0;36mDatasetBuilder._download_and_prepare\u001b[0;34m(self, dl_manager, verification_mode, **prepare_split_kwargs)\u001b[0m\n\u001b[1;32m 1096\u001b[0m split_dict\u001b[38;5;241m.\u001b[39madd(split_generator\u001b[38;5;241m.\u001b[39msplit_info)\n\u001b[1;32m 1098\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1099\u001b[0m \u001b[38;5;66;03m# Prepare split will record examples associated to the split\u001b[39;00m\n\u001b[0;32m-> 1100\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_prepare_split\u001b[49m\u001b[43m(\u001b[49m\u001b[43msplit_generator\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_split_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1101\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 1102\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m(\n\u001b[1;32m 1103\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot find data file. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1104\u001b[0m \u001b[38;5;241m+\u001b[39m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmanual_download_instructions \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 1105\u001b[0m \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mOriginal error:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1106\u001b[0m \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mstr\u001b[39m(e)\n\u001b[1;32m 1107\u001b[0m ) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n",
|
| 52 |
-
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:1605\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._prepare_split\u001b[0;34m(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size)\u001b[0m\n\u001b[1;32m 1603\u001b[0m job_id \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n\u001b[1;32m 1604\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m pbar:\n\u001b[0;32m-> 1605\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mjob_id\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdone\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcontent\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_prepare_split_single\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1606\u001b[0m \u001b[43m \u001b[49m\u001b[43mgen_kwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgen_kwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mjob_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjob_id\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m_prepare_split_args\u001b[49m\n\u001b[1;32m 1607\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m:\u001b[49m\n\u001b[1;32m 1608\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mdone\u001b[49m\u001b[43m:\u001b[49m\n\u001b[1;32m 1609\u001b[0m \u001b[43m \u001b[49m\u001b[43mresult\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mcontent\u001b[49m\n",
|
| 53 |
-
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:1762\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._prepare_split_single\u001b[0;34m(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)\u001b[0m\n\u001b[1;32m 1760\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(e, SchemaInferenceError) \u001b[38;5;129;01mand\u001b[39;00m e\u001b[38;5;241m.\u001b[39m__context__ \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 1761\u001b[0m e \u001b[38;5;241m=\u001b[39m e\u001b[38;5;241m.\u001b[39m__context__\n\u001b[0;32m-> 1762\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m DatasetGenerationError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAn error occurred while generating the dataset\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[1;32m 1764\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m job_id, \u001b[38;5;28;01mTrue\u001b[39;00m, (total_num_examples, total_num_bytes, writer\u001b[38;5;241m.\u001b[39m_features, num_shards, shard_lengths)\n",
|
| 54 |
-
"\u001b[0;31mDatasetGenerationError\u001b[0m: An error occurred while generating the dataset"
|
| 55 |
]
|
| 56 |
}
|
| 57 |
],
|
| 58 |
"source": [
|
| 59 |
-
"
|
|
|
|
|
|
|
| 60 |
]
|
| 61 |
},
|
| 62 |
{
|
| 63 |
"cell_type": "code",
|
| 64 |
-
"execution_count":
|
| 65 |
"metadata": {},
|
| 66 |
"outputs": [
|
| 67 |
{
|
|
@@ -79,7 +67,7 @@
|
|
| 79 |
" 'Count': 33940}"
|
| 80 |
]
|
| 81 |
},
|
| 82 |
-
"execution_count":
|
| 83 |
"metadata": {},
|
| 84 |
"output_type": "execute_result"
|
| 85 |
}
|
|
@@ -90,7 +78,7 @@
|
|
| 90 |
},
|
| 91 |
{
|
| 92 |
"cell_type": "code",
|
| 93 |
-
"execution_count":
|
| 94 |
"metadata": {},
|
| 95 |
"outputs": [],
|
| 96 |
"source": [
|
|
@@ -99,7 +87,7 @@
|
|
| 99 |
},
|
| 100 |
{
|
| 101 |
"cell_type": "code",
|
| 102 |
-
"execution_count":
|
| 103 |
"metadata": {},
|
| 104 |
"outputs": [
|
| 105 |
{
|
|
@@ -111,13 +99,13 @@
|
|
| 111 |
" 'Region Type': 'country',\n",
|
| 112 |
" 'State': None,\n",
|
| 113 |
" 'Home Type': 'condo/co-op only',\n",
|
| 114 |
-
" 'Date': '2018-
|
| 115 |
-
" 'Sale Price':
|
| 116 |
-
" 'Sale Price per Sqft':
|
| 117 |
-
" 'Count':
|
| 118 |
]
|
| 119 |
},
|
| 120 |
-
"execution_count":
|
| 121 |
"metadata": {},
|
| 122 |
"output_type": "execute_result"
|
| 123 |
}
|
|
|
|
| 22 |
},
|
| 23 |
{
|
| 24 |
"cell_type": "code",
|
| 25 |
+
"execution_count": 3,
|
| 26 |
"metadata": {},
|
| 27 |
"outputs": [
|
| 28 |
{
|
| 29 |
+
"ename": "ValueError",
|
| 30 |
+
"evalue": "BuilderConfig 'for_sale_listings' not found. Available: ['home_value_forecasts', 'new_constructions']",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
"output_type": "error",
|
| 32 |
"traceback": [
|
| 33 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 34 |
+
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
| 35 |
+
"Cell \u001b[0;32mIn[3], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m configs \u001b[38;5;241m=\u001b[39m [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhome_value_forecasts\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnew_constructions\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfor_sale_listings\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[0;32m----> 3\u001b[0m dataset \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmisikoff/zillow\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfor_sale_listings\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
|
| 36 |
+
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/load.py:2548\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[0m\n\u001b[1;32m 2543\u001b[0m verification_mode \u001b[38;5;241m=\u001b[39m VerificationMode(\n\u001b[1;32m 2544\u001b[0m (verification_mode \u001b[38;5;129;01mor\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mBASIC_CHECKS) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m save_infos \u001b[38;5;28;01melse\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mALL_CHECKS\n\u001b[1;32m 2545\u001b[0m )\n\u001b[1;32m 2547\u001b[0m \u001b[38;5;66;03m# Create a dataset builder\u001b[39;00m\n\u001b[0;32m-> 2548\u001b[0m builder_instance \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset_builder\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2549\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2550\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2551\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2552\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2553\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2554\u001b[0m \u001b[43m \u001b[49m\u001b[43mfeatures\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2555\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2556\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2557\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2558\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2559\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2560\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrust_remote_code\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2561\u001b[0m \u001b[43m \u001b[49m\u001b[43m_require_default_config_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 2562\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2563\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2565\u001b[0m \u001b[38;5;66;03m# Return iterable dataset in case of streaming\u001b[39;00m\n\u001b[1;32m 2566\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m streaming:\n",
|
| 37 |
+
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/load.py:2257\u001b[0m, in \u001b[0;36mload_dataset_builder\u001b[0;34m(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs)\u001b[0m\n\u001b[1;32m 2255\u001b[0m builder_cls \u001b[38;5;241m=\u001b[39m get_dataset_builder_class(dataset_module, dataset_name\u001b[38;5;241m=\u001b[39mdataset_name)\n\u001b[1;32m 2256\u001b[0m \u001b[38;5;66;03m# Instantiate the dataset builder\u001b[39;00m\n\u001b[0;32m-> 2257\u001b[0m builder_instance: DatasetBuilder \u001b[38;5;241m=\u001b[39m \u001b[43mbuilder_cls\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2258\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2259\u001b[0m \u001b[43m \u001b[49m\u001b[43mdataset_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdataset_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2260\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2261\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2262\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2263\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mhash\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdataset_module\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhash\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2264\u001b[0m \u001b[43m \u001b[49m\u001b[43minfo\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minfo\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2265\u001b[0m \u001b[43m \u001b[49m\u001b[43mfeatures\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2266\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2267\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2268\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mbuilder_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2269\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2270\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2271\u001b[0m builder_instance\u001b[38;5;241m.\u001b[39m_use_legacy_cache_dir_if_possible(dataset_module)\n\u001b[1;32m 2273\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m builder_instance\n",
|
| 38 |
+
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:371\u001b[0m, in \u001b[0;36mDatasetBuilder.__init__\u001b[0;34m(self, cache_dir, dataset_name, config_name, hash, base_path, info, features, token, use_auth_token, repo_id, data_files, data_dir, storage_options, writer_batch_size, name, **config_kwargs)\u001b[0m\n\u001b[1;32m 369\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data_dir \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 370\u001b[0m config_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdata_dir\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m data_dir\n\u001b[0;32m--> 371\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig_id \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_create_builder_config\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 372\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 373\u001b[0m \u001b[43m \u001b[49m\u001b[43mcustom_features\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 374\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 375\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 377\u001b[0m \u001b[38;5;66;03m# prepare info: DatasetInfo are a standardized dataclass across all datasets\u001b[39;00m\n\u001b[1;32m 378\u001b[0m \u001b[38;5;66;03m# Prefill datasetinfo\u001b[39;00m\n\u001b[1;32m 379\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m info \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 380\u001b[0m \u001b[38;5;66;03m# TODO FOR PACKAGED MODULES IT IMPORTS DATA FROM src/packaged_modules which doesn't make sense\u001b[39;00m\n",
|
| 39 |
+
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:592\u001b[0m, in \u001b[0;36mDatasetBuilder._create_builder_config\u001b[0;34m(self, config_name, custom_features, **config_kwargs)\u001b[0m\n\u001b[1;32m 590\u001b[0m builder_config \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbuilder_configs\u001b[38;5;241m.\u001b[39mget(config_name)\n\u001b[1;32m 591\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m builder_config \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mBUILDER_CONFIGS:\n\u001b[0;32m--> 592\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 593\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mBuilderConfig \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mconfig_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m not found. Available: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbuilder_configs\u001b[38;5;241m.\u001b[39mkeys())\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 594\u001b[0m )\n\u001b[1;32m 596\u001b[0m \u001b[38;5;66;03m# if not using an existing config, then create a new config on the fly\u001b[39;00m\n\u001b[1;32m 597\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m builder_config:\n",
|
| 40 |
+
"\u001b[0;31mValueError\u001b[0m: BuilderConfig 'for_sale_listings' not found. Available: ['home_value_forecasts', 'new_constructions']"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
]
|
| 42 |
}
|
| 43 |
],
|
| 44 |
"source": [
|
| 45 |
+
"configs = [\"home_value_forecasts\", \"new_constructions\", \"for_sale_listings\"]\n",
|
| 46 |
+
"\n",
|
| 47 |
+
"dataset = load_dataset(\"misikoff/zillow\", \"for_sale_listings\", trust_remote_code=True)"
|
| 48 |
]
|
| 49 |
},
|
| 50 |
{
|
| 51 |
"cell_type": "code",
|
| 52 |
+
"execution_count": 27,
|
| 53 |
"metadata": {},
|
| 54 |
"outputs": [
|
| 55 |
{
|
|
|
|
| 67 |
" 'Count': 33940}"
|
| 68 |
]
|
| 69 |
},
|
| 70 |
+
"execution_count": 27,
|
| 71 |
"metadata": {},
|
| 72 |
"output_type": "execute_result"
|
| 73 |
}
|
|
|
|
| 78 |
},
|
| 79 |
{
|
| 80 |
"cell_type": "code",
|
| 81 |
+
"execution_count": 28,
|
| 82 |
"metadata": {},
|
| 83 |
"outputs": [],
|
| 84 |
"source": [
|
|
|
|
| 87 |
},
|
| 88 |
{
|
| 89 |
"cell_type": "code",
|
| 90 |
+
"execution_count": 37,
|
| 91 |
"metadata": {},
|
| 92 |
"outputs": [
|
| 93 |
{
|
|
|
|
| 99 |
" 'Region Type': 'country',\n",
|
| 100 |
" 'State': None,\n",
|
| 101 |
" 'Home Type': 'condo/co-op only',\n",
|
| 102 |
+
" 'Date': '2018-03-31',\n",
|
| 103 |
+
" 'Sale Price': 386700.0,\n",
|
| 104 |
+
" 'Sale Price per Sqft': 238.31776428222656,\n",
|
| 105 |
+
" 'Count': 4267}"
|
| 106 |
]
|
| 107 |
},
|
| 108 |
+
"execution_count": 37,
|
| 109 |
"metadata": {},
|
| 110 |
"output_type": "execute_result"
|
| 111 |
}
|
zillow.py
CHANGED
|
@@ -81,6 +81,11 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
| 81 |
version=VERSION,
|
| 82 |
description="This part of my dataset covers a second domain",
|
| 83 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
]
|
| 85 |
|
| 86 |
DEFAULT_CONFIG_NAME = "home_value_forecasts" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
|
@@ -140,6 +145,33 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
| 140 |
# These are the features of your dataset like images, labels ...
|
| 141 |
}
|
| 142 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
# else: # This is an example to show how to have different features for "home_value_forecasts" and "second_domain"
|
| 144 |
# features = datasets.Features(
|
| 145 |
# {
|
|
@@ -260,6 +292,26 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
| 260 |
"Count": data["Count"],
|
| 261 |
# "answer": "" if split == "test" else data["answer"],
|
| 262 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
# else:
|
| 264 |
# yield key, {
|
| 265 |
# "sentence": data["sentence"],
|
|
|
|
| 81 |
version=VERSION,
|
| 82 |
description="This part of my dataset covers a second domain",
|
| 83 |
),
|
| 84 |
+
datasets.BuilderConfig(
|
| 85 |
+
name="for_sale_listings",
|
| 86 |
+
version=VERSION,
|
| 87 |
+
description="This part of my dataset covers a second domain",
|
| 88 |
+
),
|
| 89 |
]
|
| 90 |
|
| 91 |
DEFAULT_CONFIG_NAME = "home_value_forecasts" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
|
|
|
| 145 |
# These are the features of your dataset like images, labels ...
|
| 146 |
}
|
| 147 |
)
|
| 148 |
+
elif self.config.name == "for_sale_listings":
|
| 149 |
+
features = datasets.Features(
|
| 150 |
+
{
|
| 151 |
+
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
| 152 |
+
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
| 153 |
+
"Region": datasets.Value(dtype="string", id="Region"),
|
| 154 |
+
"Region Type": datasets.Value(dtype="string", id="Region Type"),
|
| 155 |
+
"State": datasets.Value(dtype="string", id="State"),
|
| 156 |
+
"Home Type": datasets.Value(dtype="string", id="Home Type"),
|
| 157 |
+
"Date": datasets.Value(dtype="string", id="Date"),
|
| 158 |
+
"Median Listing Price": datasets.Value(
|
| 159 |
+
dtype="float32", id="Median Listing Price"
|
| 160 |
+
),
|
| 161 |
+
"Median Listing Price (Smoothed)": datasets.Value(
|
| 162 |
+
dtype="float32", id="Median Listing Price (Smoothed)"
|
| 163 |
+
),
|
| 164 |
+
"New Listings": datasets.Value(dtype="int32", id="New Listings"),
|
| 165 |
+
"New Listings (Smoothed)": datasets.Value(
|
| 166 |
+
dtype="int32", id="New Listings (Smoothed)"
|
| 167 |
+
),
|
| 168 |
+
"New Pending (Smoothed)": datasets.Value(
|
| 169 |
+
dtype="int32", id="New Pending (Smoothed)"
|
| 170 |
+
),
|
| 171 |
+
"New Pending": datasets.Value(dtype="int32", id="New Pending"),
|
| 172 |
+
# These are the features of your dataset like images, labels ...
|
| 173 |
+
}
|
| 174 |
+
)
|
| 175 |
# else: # This is an example to show how to have different features for "home_value_forecasts" and "second_domain"
|
| 176 |
# features = datasets.Features(
|
| 177 |
# {
|
|
|
|
| 292 |
"Count": data["Count"],
|
| 293 |
# "answer": "" if split == "test" else data["answer"],
|
| 294 |
}
|
| 295 |
+
elif self.config.name == "for_sale_listings":
|
| 296 |
+
# Yields examples as (key, example) tuples
|
| 297 |
+
yield key, {
|
| 298 |
+
"Region ID": data["Region ID"],
|
| 299 |
+
"Size Rank": data["Size Rank"],
|
| 300 |
+
"Region": data["Region"],
|
| 301 |
+
"Region Type": data["Region Type"],
|
| 302 |
+
"State": data["State"],
|
| 303 |
+
"Home Type": data["Home Type"],
|
| 304 |
+
"Date": data["Date"],
|
| 305 |
+
"Median Listing Price": data["Median Listing Price"],
|
| 306 |
+
"Median Listing Price (Smoothed)": data[
|
| 307 |
+
"Median Listing Price (Smoothed)"
|
| 308 |
+
],
|
| 309 |
+
"New Listings": data["New Listings"],
|
| 310 |
+
"New Listings (Smoothed)": data["New Listings (Smoothed)"],
|
| 311 |
+
"New Pending (Smoothed)": data["New Pending (Smoothed)"],
|
| 312 |
+
"New Pending": data["New Pending"],
|
| 313 |
+
# "answer": "" if split == "test" else data["answer"],
|
| 314 |
+
}
|
| 315 |
# else:
|
| 316 |
# yield key, {
|
| 317 |
# "sentence": data["sentence"],
|