fix: widen df a little
Browse files- processed/new_constructions/final.jsonl +2 -2
- processors/process_new_constructions.ipynb +320 -240
- zillow.py +8 -2
processed/new_constructions/final.jsonl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4cbd1713a383959a9c43afb152cf8dd169b584b809b1c940c9b48ae8b8d8a8e6
|
| 3 |
+
size 9865188
|
processors/process_new_constructions.ipynb
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
@@ -12,7 +12,7 @@
|
|
| 12 |
},
|
| 13 |
{
|
| 14 |
"cell_type": "code",
|
| 15 |
-
"execution_count":
|
| 16 |
"metadata": {},
|
| 17 |
"outputs": [],
|
| 18 |
"source": [
|
|
@@ -25,7 +25,7 @@
|
|
| 25 |
},
|
| 26 |
{
|
| 27 |
"cell_type": "code",
|
| 28 |
-
"execution_count":
|
| 29 |
"metadata": {},
|
| 30 |
"outputs": [
|
| 31 |
{
|
|
@@ -69,10 +69,11 @@
|
|
| 69 |
" <th>RegionName</th>\n",
|
| 70 |
" <th>RegionType</th>\n",
|
| 71 |
" <th>StateName</th>\n",
|
| 72 |
-
" <th>Value Type</th>\n",
|
| 73 |
" <th>Home Type</th>\n",
|
| 74 |
" <th>Date</th>\n",
|
| 75 |
-
" <th>
|
|
|
|
|
|
|
| 76 |
" </tr>\n",
|
| 77 |
" </thead>\n",
|
| 78 |
" <tbody>\n",
|
|
@@ -83,58 +84,63 @@
|
|
| 83 |
" <td>United States</td>\n",
|
| 84 |
" <td>country</td>\n",
|
| 85 |
" <td>NaN</td>\n",
|
| 86 |
-
" <td>
|
| 87 |
-
" <td>Condo</td>\n",
|
| 88 |
" <td>2018-01-31</td>\n",
|
| 89 |
-
" <td>
|
|
|
|
|
|
|
| 90 |
" </tr>\n",
|
| 91 |
" <tr>\n",
|
| 92 |
" <th>1</th>\n",
|
| 93 |
-
" <td>
|
| 94 |
-
" <td>
|
| 95 |
-
" <td>
|
| 96 |
-
" <td>
|
| 97 |
-
" <td>
|
| 98 |
-
" <td>
|
| 99 |
-
" <td>Condo</td>\n",
|
| 100 |
" <td>2018-01-31</td>\n",
|
| 101 |
-
" <td>
|
|
|
|
|
|
|
| 102 |
" </tr>\n",
|
| 103 |
" <tr>\n",
|
| 104 |
" <th>2</th>\n",
|
| 105 |
-
" <td>
|
| 106 |
-
" <td>
|
| 107 |
-
" <td>
|
| 108 |
-
" <td>
|
| 109 |
-
" <td>
|
| 110 |
-
" <td>
|
| 111 |
-
" <td>Condo</td>\n",
|
| 112 |
" <td>2018-01-31</td>\n",
|
| 113 |
-
" <td>
|
|
|
|
|
|
|
| 114 |
" </tr>\n",
|
| 115 |
" <tr>\n",
|
| 116 |
" <th>3</th>\n",
|
| 117 |
-
" <td>
|
| 118 |
-
" <td>
|
| 119 |
-
" <td>
|
| 120 |
-
" <td>
|
| 121 |
-
" <td>VA</td>\n",
|
| 122 |
-
" <td>Count</td>\n",
|
| 123 |
-
" <td>Condo</td>\n",
|
| 124 |
-
" <td>2018-01-31</td>\n",
|
| 125 |
" <td>NaN</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
" </tr>\n",
|
| 127 |
" <tr>\n",
|
| 128 |
" <th>4</th>\n",
|
| 129 |
-
" <td>
|
| 130 |
-
" <td>
|
| 131 |
-
" <td>
|
| 132 |
-
" <td>
|
| 133 |
-
" <td>
|
| 134 |
-
" <td>
|
| 135 |
-
" <td>
|
| 136 |
-
" <td>
|
| 137 |
-
" <td>
|
|
|
|
| 138 |
" </tr>\n",
|
| 139 |
" <tr>\n",
|
| 140 |
" <th>...</th>\n",
|
|
@@ -147,103 +153,109 @@
|
|
| 147 |
" <td>...</td>\n",
|
| 148 |
" <td>...</td>\n",
|
| 149 |
" <td>...</td>\n",
|
|
|
|
| 150 |
" </tr>\n",
|
| 151 |
" <tr>\n",
|
| 152 |
-
" <th>
|
| 153 |
-
" <td>
|
| 154 |
-
" <td>
|
| 155 |
-
" <td>
|
| 156 |
" <td>msa</td>\n",
|
| 157 |
-
" <td>
|
| 158 |
-
" <td>
|
| 159 |
-
" <td>
|
| 160 |
-
" <td>
|
| 161 |
-
" <td>
|
|
|
|
| 162 |
" </tr>\n",
|
| 163 |
" <tr>\n",
|
| 164 |
-
" <th>
|
| 165 |
-
" <td>
|
| 166 |
-
" <td>
|
| 167 |
-
" <td>
|
| 168 |
" <td>msa</td>\n",
|
| 169 |
-
" <td>
|
| 170 |
-
" <td>
|
| 171 |
-
" <td>
|
| 172 |
-
" <td>
|
| 173 |
-
" <td>
|
|
|
|
| 174 |
" </tr>\n",
|
| 175 |
" <tr>\n",
|
| 176 |
-
" <th>
|
| 177 |
-
" <td>
|
| 178 |
-
" <td>
|
| 179 |
-
" <td>
|
| 180 |
" <td>msa</td>\n",
|
| 181 |
-
" <td>
|
| 182 |
-
" <td>
|
| 183 |
-
" <td>
|
| 184 |
-
" <td>
|
| 185 |
-
" <td>
|
|
|
|
| 186 |
" </tr>\n",
|
| 187 |
" <tr>\n",
|
| 188 |
-
" <th>
|
| 189 |
-
" <td>
|
| 190 |
-
" <td>
|
| 191 |
-
" <td>
|
| 192 |
" <td>msa</td>\n",
|
| 193 |
-
" <td>
|
| 194 |
-
" <td>
|
| 195 |
-
" <td>SFR/Condo</td>\n",
|
| 196 |
" <td>2023-11-30</td>\n",
|
| 197 |
-
" <td>
|
|
|
|
|
|
|
| 198 |
" </tr>\n",
|
| 199 |
" <tr>\n",
|
| 200 |
-
" <th>
|
| 201 |
-
" <td>
|
| 202 |
-
" <td>
|
| 203 |
-
" <td>
|
| 204 |
" <td>msa</td>\n",
|
| 205 |
-
" <td>
|
| 206 |
-
" <td>
|
| 207 |
-
" <td>SFR/Condo</td>\n",
|
| 208 |
" <td>2023-11-30</td>\n",
|
| 209 |
-
" <td>
|
|
|
|
|
|
|
| 210 |
" </tr>\n",
|
| 211 |
" </tbody>\n",
|
| 212 |
"</table>\n",
|
| 213 |
-
"<p>
|
| 214 |
"</div>"
|
| 215 |
],
|
| 216 |
"text/plain": [
|
| 217 |
-
" RegionID SizeRank
|
| 218 |
-
"0 102001 0
|
| 219 |
-
"1
|
| 220 |
-
"2
|
| 221 |
-
"3
|
| 222 |
-
"4
|
| 223 |
-
"... ... ...
|
| 224 |
-
"
|
| 225 |
-
"
|
| 226 |
-
"
|
| 227 |
-
"
|
| 228 |
-
"
|
| 229 |
"\n",
|
| 230 |
-
"
|
| 231 |
-
"0
|
| 232 |
-
"1
|
| 233 |
-
"2
|
| 234 |
-
"3
|
| 235 |
-
"4
|
| 236 |
-
"...
|
| 237 |
-
"
|
| 238 |
-
"
|
| 239 |
-
"
|
| 240 |
-
"
|
| 241 |
-
"
|
| 242 |
"\n",
|
| 243 |
-
"[
|
| 244 |
]
|
| 245 |
},
|
| 246 |
-
"execution_count":
|
| 247 |
"metadata": {},
|
| 248 |
"output_type": "execute_result"
|
| 249 |
}
|
|
@@ -259,49 +271,98 @@
|
|
| 259 |
" \"RegionName\",\n",
|
| 260 |
" \"RegionType\",\n",
|
| 261 |
" \"StateName\",\n",
|
| 262 |
-
" \"Value Type\",\n",
|
| 263 |
" \"Home Type\",\n",
|
| 264 |
"]\n",
|
| 265 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
"for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
|
| 267 |
" if filename.endswith(\".csv\"):\n",
|
| 268 |
" print(\"processing \" + filename)\n",
|
| 269 |
" cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
|
| 270 |
-
" if \"sale_price_per_sqft\" in filename:\n",
|
| 271 |
-
" cur_df[\"Value Type\"] = \"Sale Price Per Sqft\"\n",
|
| 272 |
-
" elif \"sale_price_uc\" in filename:\n",
|
| 273 |
-
" cur_df[\"Value Type\"] = \"Sale Price\"\n",
|
| 274 |
-
" elif \"count\" in filename:\n",
|
| 275 |
-
" cur_df[\"Value Type\"] = \"Count\"\n",
|
| 276 |
"\n",
|
| 277 |
" if \"sfrcondo\" in filename:\n",
|
| 278 |
-
" cur_df[\"Home Type\"] = \"
|
| 279 |
" elif \"sfr\" in filename:\n",
|
| 280 |
" cur_df[\"Home Type\"] = \"SFR\"\n",
|
| 281 |
" elif \"condo\" in filename:\n",
|
| 282 |
-
" cur_df[\"Home Type\"] = \"
|
| 283 |
"\n",
|
| 284 |
" # Identify columns to pivot\n",
|
| 285 |
" columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
|
| 286 |
"\n",
|
| 287 |
-
"
|
| 288 |
-
"
|
| 289 |
-
"
|
| 290 |
-
"
|
| 291 |
-
"
|
| 292 |
-
"
|
| 293 |
-
"
|
| 294 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
"\n",
|
| 296 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
"\n",
|
| 298 |
-
"combined_df = pd.concat(data_frames)\n",
|
| 299 |
"combined_df"
|
| 300 |
]
|
| 301 |
},
|
| 302 |
{
|
| 303 |
"cell_type": "code",
|
| 304 |
-
"execution_count":
|
| 305 |
"metadata": {},
|
| 306 |
"outputs": [
|
| 307 |
{
|
|
@@ -330,10 +391,11 @@
|
|
| 330 |
" <th>Region</th>\n",
|
| 331 |
" <th>Region Type</th>\n",
|
| 332 |
" <th>State</th>\n",
|
| 333 |
-
" <th>Value Type</th>\n",
|
| 334 |
" <th>Home Type</th>\n",
|
| 335 |
" <th>Date</th>\n",
|
| 336 |
-
" <th>
|
|
|
|
|
|
|
| 337 |
" </tr>\n",
|
| 338 |
" </thead>\n",
|
| 339 |
" <tbody>\n",
|
|
@@ -344,58 +406,63 @@
|
|
| 344 |
" <td>United States</td>\n",
|
| 345 |
" <td>country</td>\n",
|
| 346 |
" <td>NaN</td>\n",
|
| 347 |
-
" <td>
|
| 348 |
-
" <td>Condo</td>\n",
|
| 349 |
" <td>2018-01-31</td>\n",
|
| 350 |
-
" <td>
|
|
|
|
|
|
|
| 351 |
" </tr>\n",
|
| 352 |
" <tr>\n",
|
| 353 |
" <th>1</th>\n",
|
| 354 |
-
" <td>
|
| 355 |
-
" <td>
|
| 356 |
-
" <td>
|
| 357 |
-
" <td>
|
| 358 |
-
" <td>
|
| 359 |
-
" <td>
|
| 360 |
-
" <td>Condo</td>\n",
|
| 361 |
" <td>2018-01-31</td>\n",
|
| 362 |
-
" <td>
|
|
|
|
|
|
|
| 363 |
" </tr>\n",
|
| 364 |
" <tr>\n",
|
| 365 |
" <th>2</th>\n",
|
| 366 |
-
" <td>
|
| 367 |
-
" <td>
|
| 368 |
-
" <td>
|
| 369 |
-
" <td>
|
| 370 |
-
" <td>
|
| 371 |
-
" <td>
|
| 372 |
-
" <td>Condo</td>\n",
|
| 373 |
" <td>2018-01-31</td>\n",
|
| 374 |
-
" <td>
|
|
|
|
|
|
|
| 375 |
" </tr>\n",
|
| 376 |
" <tr>\n",
|
| 377 |
" <th>3</th>\n",
|
| 378 |
-
" <td>
|
| 379 |
-
" <td>
|
| 380 |
-
" <td>
|
| 381 |
-
" <td>
|
| 382 |
-
" <td>VA</td>\n",
|
| 383 |
-
" <td>Count</td>\n",
|
| 384 |
-
" <td>Condo</td>\n",
|
| 385 |
-
" <td>2018-01-31</td>\n",
|
| 386 |
" <td>NaN</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
" </tr>\n",
|
| 388 |
" <tr>\n",
|
| 389 |
" <th>4</th>\n",
|
| 390 |
-
" <td>
|
| 391 |
-
" <td>
|
| 392 |
-
" <td>
|
| 393 |
-
" <td>
|
| 394 |
-
" <td>
|
| 395 |
-
" <td>
|
| 396 |
-
" <td>
|
| 397 |
-
" <td>
|
| 398 |
-
" <td>
|
|
|
|
| 399 |
" </tr>\n",
|
| 400 |
" <tr>\n",
|
| 401 |
" <th>...</th>\n",
|
|
@@ -408,103 +475,109 @@
|
|
| 408 |
" <td>...</td>\n",
|
| 409 |
" <td>...</td>\n",
|
| 410 |
" <td>...</td>\n",
|
|
|
|
| 411 |
" </tr>\n",
|
| 412 |
" <tr>\n",
|
| 413 |
-
" <th>
|
| 414 |
-
" <td>
|
| 415 |
-
" <td>
|
| 416 |
-
" <td>
|
| 417 |
" <td>msa</td>\n",
|
| 418 |
-
" <td>
|
| 419 |
-
" <td>
|
| 420 |
-
" <td>
|
| 421 |
-
" <td>
|
| 422 |
-
" <td>
|
|
|
|
| 423 |
" </tr>\n",
|
| 424 |
" <tr>\n",
|
| 425 |
-
" <th>
|
| 426 |
-
" <td>
|
| 427 |
-
" <td>
|
| 428 |
-
" <td>
|
| 429 |
" <td>msa</td>\n",
|
| 430 |
-
" <td>
|
| 431 |
-
" <td>
|
| 432 |
-
" <td>
|
| 433 |
-
" <td>
|
| 434 |
-
" <td>
|
|
|
|
| 435 |
" </tr>\n",
|
| 436 |
" <tr>\n",
|
| 437 |
-
" <th>
|
| 438 |
-
" <td>
|
| 439 |
-
" <td>
|
| 440 |
-
" <td>
|
| 441 |
" <td>msa</td>\n",
|
| 442 |
-
" <td>
|
| 443 |
-
" <td>
|
| 444 |
-
" <td>
|
| 445 |
-
" <td>
|
| 446 |
-
" <td>
|
|
|
|
| 447 |
" </tr>\n",
|
| 448 |
" <tr>\n",
|
| 449 |
-
" <th>
|
| 450 |
-
" <td>
|
| 451 |
-
" <td>
|
| 452 |
-
" <td>
|
| 453 |
" <td>msa</td>\n",
|
| 454 |
-
" <td>
|
| 455 |
-
" <td>
|
| 456 |
-
" <td>SFR/Condo</td>\n",
|
| 457 |
" <td>2023-11-30</td>\n",
|
| 458 |
-
" <td>
|
|
|
|
|
|
|
| 459 |
" </tr>\n",
|
| 460 |
" <tr>\n",
|
| 461 |
-
" <th>
|
| 462 |
-
" <td>
|
| 463 |
-
" <td>
|
| 464 |
-
" <td>
|
| 465 |
" <td>msa</td>\n",
|
| 466 |
-
" <td>
|
| 467 |
-
" <td>
|
| 468 |
-
" <td>SFR/Condo</td>\n",
|
| 469 |
" <td>2023-11-30</td>\n",
|
| 470 |
-
" <td>
|
|
|
|
|
|
|
| 471 |
" </tr>\n",
|
| 472 |
" </tbody>\n",
|
| 473 |
"</table>\n",
|
| 474 |
-
"<p>
|
| 475 |
"</div>"
|
| 476 |
],
|
| 477 |
"text/plain": [
|
| 478 |
-
" Region ID Size Rank
|
| 479 |
-
"0 102001 0
|
| 480 |
-
"1
|
| 481 |
-
"2
|
| 482 |
-
"3
|
| 483 |
-
"4
|
| 484 |
-
"... ... ...
|
| 485 |
-
"
|
| 486 |
-
"
|
| 487 |
-
"
|
| 488 |
-
"
|
| 489 |
-
"
|
| 490 |
"\n",
|
| 491 |
-
"
|
| 492 |
-
"0
|
| 493 |
-
"1
|
| 494 |
-
"2
|
| 495 |
-
"3
|
| 496 |
-
"4
|
| 497 |
-
"...
|
| 498 |
-
"
|
| 499 |
-
"
|
| 500 |
-
"
|
| 501 |
-
"
|
| 502 |
-
"
|
| 503 |
"\n",
|
| 504 |
-
"[
|
| 505 |
]
|
| 506 |
},
|
| 507 |
-
"execution_count":
|
| 508 |
"metadata": {},
|
| 509 |
"output_type": "execute_result"
|
| 510 |
}
|
|
@@ -526,7 +599,7 @@
|
|
| 526 |
},
|
| 527 |
{
|
| 528 |
"cell_type": "code",
|
| 529 |
-
"execution_count":
|
| 530 |
"metadata": {},
|
| 531 |
"outputs": [],
|
| 532 |
"source": [
|
|
@@ -535,6 +608,13 @@
|
|
| 535 |
"\n",
|
| 536 |
"final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)"
|
| 537 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 538 |
}
|
| 539 |
],
|
| 540 |
"metadata": {
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 2,
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
|
|
| 12 |
},
|
| 13 |
{
|
| 14 |
"cell_type": "code",
|
| 15 |
+
"execution_count": 3,
|
| 16 |
"metadata": {},
|
| 17 |
"outputs": [],
|
| 18 |
"source": [
|
|
|
|
| 25 |
},
|
| 26 |
{
|
| 27 |
"cell_type": "code",
|
| 28 |
+
"execution_count": 47,
|
| 29 |
"metadata": {},
|
| 30 |
"outputs": [
|
| 31 |
{
|
|
|
|
| 69 |
" <th>RegionName</th>\n",
|
| 70 |
" <th>RegionType</th>\n",
|
| 71 |
" <th>StateName</th>\n",
|
|
|
|
| 72 |
" <th>Home Type</th>\n",
|
| 73 |
" <th>Date</th>\n",
|
| 74 |
+
" <th>Sale Price</th>\n",
|
| 75 |
+
" <th>Sale Price per Sqft</th>\n",
|
| 76 |
+
" <th>Count</th>\n",
|
| 77 |
" </tr>\n",
|
| 78 |
" </thead>\n",
|
| 79 |
" <tbody>\n",
|
|
|
|
| 84 |
" <td>United States</td>\n",
|
| 85 |
" <td>country</td>\n",
|
| 86 |
" <td>NaN</td>\n",
|
| 87 |
+
" <td>SFR</td>\n",
|
|
|
|
| 88 |
" <td>2018-01-31</td>\n",
|
| 89 |
+
" <td>309000.0</td>\n",
|
| 90 |
+
" <td>137.412316</td>\n",
|
| 91 |
+
" <td>33940.0</td>\n",
|
| 92 |
" </tr>\n",
|
| 93 |
" <tr>\n",
|
| 94 |
" <th>1</th>\n",
|
| 95 |
+
" <td>102001</td>\n",
|
| 96 |
+
" <td>0</td>\n",
|
| 97 |
+
" <td>United States</td>\n",
|
| 98 |
+
" <td>country</td>\n",
|
| 99 |
+
" <td>NaN</td>\n",
|
| 100 |
+
" <td>all homes</td>\n",
|
|
|
|
| 101 |
" <td>2018-01-31</td>\n",
|
| 102 |
+
" <td>314596.0</td>\n",
|
| 103 |
+
" <td>140.504620</td>\n",
|
| 104 |
+
" <td>37135.0</td>\n",
|
| 105 |
" </tr>\n",
|
| 106 |
" <tr>\n",
|
| 107 |
" <th>2</th>\n",
|
| 108 |
+
" <td>102001</td>\n",
|
| 109 |
+
" <td>0</td>\n",
|
| 110 |
+
" <td>United States</td>\n",
|
| 111 |
+
" <td>country</td>\n",
|
| 112 |
+
" <td>NaN</td>\n",
|
| 113 |
+
" <td>condo/co-op only</td>\n",
|
|
|
|
| 114 |
" <td>2018-01-31</td>\n",
|
| 115 |
+
" <td>388250.0</td>\n",
|
| 116 |
+
" <td>238.300000</td>\n",
|
| 117 |
+
" <td>3195.0</td>\n",
|
| 118 |
" </tr>\n",
|
| 119 |
" <tr>\n",
|
| 120 |
" <th>3</th>\n",
|
| 121 |
+
" <td>102001</td>\n",
|
| 122 |
+
" <td>0</td>\n",
|
| 123 |
+
" <td>United States</td>\n",
|
| 124 |
+
" <td>country</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
" <td>NaN</td>\n",
|
| 126 |
+
" <td>SFR</td>\n",
|
| 127 |
+
" <td>2018-02-28</td>\n",
|
| 128 |
+
" <td>309072.5</td>\n",
|
| 129 |
+
" <td>137.199170</td>\n",
|
| 130 |
+
" <td>33304.0</td>\n",
|
| 131 |
" </tr>\n",
|
| 132 |
" <tr>\n",
|
| 133 |
" <th>4</th>\n",
|
| 134 |
+
" <td>102001</td>\n",
|
| 135 |
+
" <td>0</td>\n",
|
| 136 |
+
" <td>United States</td>\n",
|
| 137 |
+
" <td>country</td>\n",
|
| 138 |
+
" <td>NaN</td>\n",
|
| 139 |
+
" <td>all homes</td>\n",
|
| 140 |
+
" <td>2018-02-28</td>\n",
|
| 141 |
+
" <td>314608.0</td>\n",
|
| 142 |
+
" <td>140.304966</td>\n",
|
| 143 |
+
" <td>36493.0</td>\n",
|
| 144 |
" </tr>\n",
|
| 145 |
" <tr>\n",
|
| 146 |
" <th>...</th>\n",
|
|
|
|
| 153 |
" <td>...</td>\n",
|
| 154 |
" <td>...</td>\n",
|
| 155 |
" <td>...</td>\n",
|
| 156 |
+
" <td>...</td>\n",
|
| 157 |
" </tr>\n",
|
| 158 |
" <tr>\n",
|
| 159 |
+
" <th>49482</th>\n",
|
| 160 |
+
" <td>845162</td>\n",
|
| 161 |
+
" <td>535</td>\n",
|
| 162 |
+
" <td>Granbury, TX</td>\n",
|
| 163 |
" <td>msa</td>\n",
|
| 164 |
+
" <td>TX</td>\n",
|
| 165 |
+
" <td>all homes</td>\n",
|
| 166 |
+
" <td>2023-09-30</td>\n",
|
| 167 |
+
" <td>NaN</td>\n",
|
| 168 |
+
" <td>NaN</td>\n",
|
| 169 |
+
" <td>26.0</td>\n",
|
| 170 |
" </tr>\n",
|
| 171 |
" <tr>\n",
|
| 172 |
+
" <th>49483</th>\n",
|
| 173 |
+
" <td>845162</td>\n",
|
| 174 |
+
" <td>535</td>\n",
|
| 175 |
+
" <td>Granbury, TX</td>\n",
|
| 176 |
" <td>msa</td>\n",
|
| 177 |
+
" <td>TX</td>\n",
|
| 178 |
+
" <td>SFR</td>\n",
|
| 179 |
+
" <td>2023-10-31</td>\n",
|
| 180 |
+
" <td>NaN</td>\n",
|
| 181 |
+
" <td>NaN</td>\n",
|
| 182 |
+
" <td>24.0</td>\n",
|
| 183 |
" </tr>\n",
|
| 184 |
" <tr>\n",
|
| 185 |
+
" <th>49484</th>\n",
|
| 186 |
+
" <td>845162</td>\n",
|
| 187 |
+
" <td>535</td>\n",
|
| 188 |
+
" <td>Granbury, TX</td>\n",
|
| 189 |
" <td>msa</td>\n",
|
| 190 |
+
" <td>TX</td>\n",
|
| 191 |
+
" <td>all homes</td>\n",
|
| 192 |
+
" <td>2023-10-31</td>\n",
|
| 193 |
+
" <td>NaN</td>\n",
|
| 194 |
+
" <td>NaN</td>\n",
|
| 195 |
+
" <td>24.0</td>\n",
|
| 196 |
" </tr>\n",
|
| 197 |
" <tr>\n",
|
| 198 |
+
" <th>49485</th>\n",
|
| 199 |
+
" <td>845162</td>\n",
|
| 200 |
+
" <td>535</td>\n",
|
| 201 |
+
" <td>Granbury, TX</td>\n",
|
| 202 |
" <td>msa</td>\n",
|
| 203 |
+
" <td>TX</td>\n",
|
| 204 |
+
" <td>SFR</td>\n",
|
|
|
|
| 205 |
" <td>2023-11-30</td>\n",
|
| 206 |
+
" <td>NaN</td>\n",
|
| 207 |
+
" <td>NaN</td>\n",
|
| 208 |
+
" <td>16.0</td>\n",
|
| 209 |
" </tr>\n",
|
| 210 |
" <tr>\n",
|
| 211 |
+
" <th>49486</th>\n",
|
| 212 |
+
" <td>845162</td>\n",
|
| 213 |
+
" <td>535</td>\n",
|
| 214 |
+
" <td>Granbury, TX</td>\n",
|
| 215 |
" <td>msa</td>\n",
|
| 216 |
+
" <td>TX</td>\n",
|
| 217 |
+
" <td>all homes</td>\n",
|
|
|
|
| 218 |
" <td>2023-11-30</td>\n",
|
| 219 |
+
" <td>NaN</td>\n",
|
| 220 |
+
" <td>NaN</td>\n",
|
| 221 |
+
" <td>16.0</td>\n",
|
| 222 |
" </tr>\n",
|
| 223 |
" </tbody>\n",
|
| 224 |
"</table>\n",
|
| 225 |
+
"<p>49487 rows × 10 columns</p>\n",
|
| 226 |
"</div>"
|
| 227 |
],
|
| 228 |
"text/plain": [
|
| 229 |
+
" RegionID SizeRank RegionName RegionType StateName \\\n",
|
| 230 |
+
"0 102001 0 United States country NaN \n",
|
| 231 |
+
"1 102001 0 United States country NaN \n",
|
| 232 |
+
"2 102001 0 United States country NaN \n",
|
| 233 |
+
"3 102001 0 United States country NaN \n",
|
| 234 |
+
"4 102001 0 United States country NaN \n",
|
| 235 |
+
"... ... ... ... ... ... \n",
|
| 236 |
+
"49482 845162 535 Granbury, TX msa TX \n",
|
| 237 |
+
"49483 845162 535 Granbury, TX msa TX \n",
|
| 238 |
+
"49484 845162 535 Granbury, TX msa TX \n",
|
| 239 |
+
"49485 845162 535 Granbury, TX msa TX \n",
|
| 240 |
+
"49486 845162 535 Granbury, TX msa TX \n",
|
| 241 |
"\n",
|
| 242 |
+
" Home Type Date Sale Price Sale Price per Sqft Count \n",
|
| 243 |
+
"0 SFR 2018-01-31 309000.0 137.412316 33940.0 \n",
|
| 244 |
+
"1 all homes 2018-01-31 314596.0 140.504620 37135.0 \n",
|
| 245 |
+
"2 condo/co-op only 2018-01-31 388250.0 238.300000 3195.0 \n",
|
| 246 |
+
"3 SFR 2018-02-28 309072.5 137.199170 33304.0 \n",
|
| 247 |
+
"4 all homes 2018-02-28 314608.0 140.304966 36493.0 \n",
|
| 248 |
+
"... ... ... ... ... ... \n",
|
| 249 |
+
"49482 all homes 2023-09-30 NaN NaN 26.0 \n",
|
| 250 |
+
"49483 SFR 2023-10-31 NaN NaN 24.0 \n",
|
| 251 |
+
"49484 all homes 2023-10-31 NaN NaN 24.0 \n",
|
| 252 |
+
"49485 SFR 2023-11-30 NaN NaN 16.0 \n",
|
| 253 |
+
"49486 all homes 2023-11-30 NaN NaN 16.0 \n",
|
| 254 |
"\n",
|
| 255 |
+
"[49487 rows x 10 columns]"
|
| 256 |
]
|
| 257 |
},
|
| 258 |
+
"execution_count": 47,
|
| 259 |
"metadata": {},
|
| 260 |
"output_type": "execute_result"
|
| 261 |
}
|
|
|
|
| 271 |
" \"RegionName\",\n",
|
| 272 |
" \"RegionType\",\n",
|
| 273 |
" \"StateName\",\n",
|
| 274 |
+
" # \"Value Type\",\n",
|
| 275 |
" \"Home Type\",\n",
|
| 276 |
"]\n",
|
| 277 |
"\n",
|
| 278 |
+
"price_data_frames = []\n",
|
| 279 |
+
"price_per_sqft_data_frames = []\n",
|
| 280 |
+
"count_data_frames = []\n",
|
| 281 |
+
"\n",
|
| 282 |
"for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
|
| 283 |
" if filename.endswith(\".csv\"):\n",
|
| 284 |
" print(\"processing \" + filename)\n",
|
| 285 |
" cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
"\n",
|
| 287 |
" if \"sfrcondo\" in filename:\n",
|
| 288 |
+
" cur_df[\"Home Type\"] = \"all homes\"\n",
|
| 289 |
" elif \"sfr\" in filename:\n",
|
| 290 |
" cur_df[\"Home Type\"] = \"SFR\"\n",
|
| 291 |
" elif \"condo\" in filename:\n",
|
| 292 |
+
" cur_df[\"Home Type\"] = \"condo/co-op only\"\n",
|
| 293 |
"\n",
|
| 294 |
" # Identify columns to pivot\n",
|
| 295 |
" columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
|
| 296 |
"\n",
|
| 297 |
+
" if \"sale_price_per_sqft\" in filename:\n",
|
| 298 |
+
" # cur_df[\"Value Type\"] = \"Sale Price Per Sqft\"\n",
|
| 299 |
+
" # Perform pivot\n",
|
| 300 |
+
" cur_df = pd.melt(\n",
|
| 301 |
+
" cur_df,\n",
|
| 302 |
+
" id_vars=exclude_columns,\n",
|
| 303 |
+
" value_vars=columns_to_pivot,\n",
|
| 304 |
+
" var_name=\"Date\",\n",
|
| 305 |
+
" value_name=\"Sale Price per Sqft\",\n",
|
| 306 |
+
" )\n",
|
| 307 |
+
" price_per_sqft_data_frames.append(cur_df)\n",
|
| 308 |
+
"\n",
|
| 309 |
+
" elif \"sale_price_uc\" in filename:\n",
|
| 310 |
+
" # cur_df[\"Value Type\"] = \"Sale Price\"\n",
|
| 311 |
+
" cur_df = pd.melt(\n",
|
| 312 |
+
" cur_df,\n",
|
| 313 |
+
" id_vars=exclude_columns,\n",
|
| 314 |
+
" value_vars=columns_to_pivot,\n",
|
| 315 |
+
" var_name=\"Date\",\n",
|
| 316 |
+
" value_name=\"Sale Price\",\n",
|
| 317 |
+
" )\n",
|
| 318 |
+
" price_data_frames.append(cur_df)\n",
|
| 319 |
+
"\n",
|
| 320 |
+
" elif \"count\" in filename:\n",
|
| 321 |
+
" # cur_df[\"Value Type\"] = \"Count\"\n",
|
| 322 |
+
" cur_df = pd.melt(\n",
|
| 323 |
+
" cur_df,\n",
|
| 324 |
+
" id_vars=exclude_columns,\n",
|
| 325 |
+
" value_vars=columns_to_pivot,\n",
|
| 326 |
+
" var_name=\"Date\",\n",
|
| 327 |
+
" value_name=\"Count\",\n",
|
| 328 |
+
" )\n",
|
| 329 |
+
" count_data_frames.append(cur_df)\n",
|
| 330 |
+
"\n",
|
| 331 |
+
"\n",
|
| 332 |
+
"combined_price = pd.concat(price_data_frames)\n",
|
| 333 |
+
"combined_price_per = pd.concat(price_per_sqft_data_frames)\n",
|
| 334 |
+
"combined_count = pd.concat(count_data_frames)\n",
|
| 335 |
+
"\n",
|
| 336 |
+
"matching_cols = [\n",
|
| 337 |
+
" \"RegionID\",\n",
|
| 338 |
+
" \"Date\",\n",
|
| 339 |
+
" \"SizeRank\",\n",
|
| 340 |
+
" \"RegionName\",\n",
|
| 341 |
+
" \"RegionType\",\n",
|
| 342 |
+
" \"StateName\",\n",
|
| 343 |
+
" # \"Value Type\",\n",
|
| 344 |
+
" \"Home Type\",\n",
|
| 345 |
+
"]\n",
|
| 346 |
"\n",
|
| 347 |
+
"combined_df = pd.merge(\n",
|
| 348 |
+
" combined_price,\n",
|
| 349 |
+
" combined_price_per,\n",
|
| 350 |
+
" on=matching_cols,\n",
|
| 351 |
+
" how=\"outer\",\n",
|
| 352 |
+
")\n",
|
| 353 |
+
"combined_df = pd.merge(\n",
|
| 354 |
+
" combined_df,\n",
|
| 355 |
+
" combined_count,\n",
|
| 356 |
+
" on=matching_cols,\n",
|
| 357 |
+
" how=\"outer\",\n",
|
| 358 |
+
")\n",
|
| 359 |
"\n",
|
|
|
|
| 360 |
"combined_df"
|
| 361 |
]
|
| 362 |
},
|
| 363 |
{
|
| 364 |
"cell_type": "code",
|
| 365 |
+
"execution_count": 48,
|
| 366 |
"metadata": {},
|
| 367 |
"outputs": [
|
| 368 |
{
|
|
|
|
| 391 |
" <th>Region</th>\n",
|
| 392 |
" <th>Region Type</th>\n",
|
| 393 |
" <th>State</th>\n",
|
|
|
|
| 394 |
" <th>Home Type</th>\n",
|
| 395 |
" <th>Date</th>\n",
|
| 396 |
+
" <th>Sale Price</th>\n",
|
| 397 |
+
" <th>Sale Price per Sqft</th>\n",
|
| 398 |
+
" <th>Count</th>\n",
|
| 399 |
" </tr>\n",
|
| 400 |
" </thead>\n",
|
| 401 |
" <tbody>\n",
|
|
|
|
| 406 |
" <td>United States</td>\n",
|
| 407 |
" <td>country</td>\n",
|
| 408 |
" <td>NaN</td>\n",
|
| 409 |
+
" <td>SFR</td>\n",
|
|
|
|
| 410 |
" <td>2018-01-31</td>\n",
|
| 411 |
+
" <td>309000.0</td>\n",
|
| 412 |
+
" <td>137.412316</td>\n",
|
| 413 |
+
" <td>33940.0</td>\n",
|
| 414 |
" </tr>\n",
|
| 415 |
" <tr>\n",
|
| 416 |
" <th>1</th>\n",
|
| 417 |
+
" <td>102001</td>\n",
|
| 418 |
+
" <td>0</td>\n",
|
| 419 |
+
" <td>United States</td>\n",
|
| 420 |
+
" <td>country</td>\n",
|
| 421 |
+
" <td>NaN</td>\n",
|
| 422 |
+
" <td>all homes</td>\n",
|
|
|
|
| 423 |
" <td>2018-01-31</td>\n",
|
| 424 |
+
" <td>314596.0</td>\n",
|
| 425 |
+
" <td>140.504620</td>\n",
|
| 426 |
+
" <td>37135.0</td>\n",
|
| 427 |
" </tr>\n",
|
| 428 |
" <tr>\n",
|
| 429 |
" <th>2</th>\n",
|
| 430 |
+
" <td>102001</td>\n",
|
| 431 |
+
" <td>0</td>\n",
|
| 432 |
+
" <td>United States</td>\n",
|
| 433 |
+
" <td>country</td>\n",
|
| 434 |
+
" <td>NaN</td>\n",
|
| 435 |
+
" <td>condo/co-op only</td>\n",
|
|
|
|
| 436 |
" <td>2018-01-31</td>\n",
|
| 437 |
+
" <td>388250.0</td>\n",
|
| 438 |
+
" <td>238.300000</td>\n",
|
| 439 |
+
" <td>3195.0</td>\n",
|
| 440 |
" </tr>\n",
|
| 441 |
" <tr>\n",
|
| 442 |
" <th>3</th>\n",
|
| 443 |
+
" <td>102001</td>\n",
|
| 444 |
+
" <td>0</td>\n",
|
| 445 |
+
" <td>United States</td>\n",
|
| 446 |
+
" <td>country</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 447 |
" <td>NaN</td>\n",
|
| 448 |
+
" <td>SFR</td>\n",
|
| 449 |
+
" <td>2018-02-28</td>\n",
|
| 450 |
+
" <td>309072.5</td>\n",
|
| 451 |
+
" <td>137.199170</td>\n",
|
| 452 |
+
" <td>33304.0</td>\n",
|
| 453 |
" </tr>\n",
|
| 454 |
" <tr>\n",
|
| 455 |
" <th>4</th>\n",
|
| 456 |
+
" <td>102001</td>\n",
|
| 457 |
+
" <td>0</td>\n",
|
| 458 |
+
" <td>United States</td>\n",
|
| 459 |
+
" <td>country</td>\n",
|
| 460 |
+
" <td>NaN</td>\n",
|
| 461 |
+
" <td>all homes</td>\n",
|
| 462 |
+
" <td>2018-02-28</td>\n",
|
| 463 |
+
" <td>314608.0</td>\n",
|
| 464 |
+
" <td>140.304966</td>\n",
|
| 465 |
+
" <td>36493.0</td>\n",
|
| 466 |
" </tr>\n",
|
| 467 |
" <tr>\n",
|
| 468 |
" <th>...</th>\n",
|
|
|
|
| 475 |
" <td>...</td>\n",
|
| 476 |
" <td>...</td>\n",
|
| 477 |
" <td>...</td>\n",
|
| 478 |
+
" <td>...</td>\n",
|
| 479 |
" </tr>\n",
|
| 480 |
" <tr>\n",
|
| 481 |
+
" <th>49482</th>\n",
|
| 482 |
+
" <td>845162</td>\n",
|
| 483 |
+
" <td>535</td>\n",
|
| 484 |
+
" <td>Granbury, TX</td>\n",
|
| 485 |
" <td>msa</td>\n",
|
| 486 |
+
" <td>TX</td>\n",
|
| 487 |
+
" <td>all homes</td>\n",
|
| 488 |
+
" <td>2023-09-30</td>\n",
|
| 489 |
+
" <td>NaN</td>\n",
|
| 490 |
+
" <td>NaN</td>\n",
|
| 491 |
+
" <td>26.0</td>\n",
|
| 492 |
" </tr>\n",
|
| 493 |
" <tr>\n",
|
| 494 |
+
" <th>49483</th>\n",
|
| 495 |
+
" <td>845162</td>\n",
|
| 496 |
+
" <td>535</td>\n",
|
| 497 |
+
" <td>Granbury, TX</td>\n",
|
| 498 |
" <td>msa</td>\n",
|
| 499 |
+
" <td>TX</td>\n",
|
| 500 |
+
" <td>SFR</td>\n",
|
| 501 |
+
" <td>2023-10-31</td>\n",
|
| 502 |
+
" <td>NaN</td>\n",
|
| 503 |
+
" <td>NaN</td>\n",
|
| 504 |
+
" <td>24.0</td>\n",
|
| 505 |
" </tr>\n",
|
| 506 |
" <tr>\n",
|
| 507 |
+
" <th>49484</th>\n",
|
| 508 |
+
" <td>845162</td>\n",
|
| 509 |
+
" <td>535</td>\n",
|
| 510 |
+
" <td>Granbury, TX</td>\n",
|
| 511 |
" <td>msa</td>\n",
|
| 512 |
+
" <td>TX</td>\n",
|
| 513 |
+
" <td>all homes</td>\n",
|
| 514 |
+
" <td>2023-10-31</td>\n",
|
| 515 |
+
" <td>NaN</td>\n",
|
| 516 |
+
" <td>NaN</td>\n",
|
| 517 |
+
" <td>24.0</td>\n",
|
| 518 |
" </tr>\n",
|
| 519 |
" <tr>\n",
|
| 520 |
+
" <th>49485</th>\n",
|
| 521 |
+
" <td>845162</td>\n",
|
| 522 |
+
" <td>535</td>\n",
|
| 523 |
+
" <td>Granbury, TX</td>\n",
|
| 524 |
" <td>msa</td>\n",
|
| 525 |
+
" <td>TX</td>\n",
|
| 526 |
+
" <td>SFR</td>\n",
|
|
|
|
| 527 |
" <td>2023-11-30</td>\n",
|
| 528 |
+
" <td>NaN</td>\n",
|
| 529 |
+
" <td>NaN</td>\n",
|
| 530 |
+
" <td>16.0</td>\n",
|
| 531 |
" </tr>\n",
|
| 532 |
" <tr>\n",
|
| 533 |
+
" <th>49486</th>\n",
|
| 534 |
+
" <td>845162</td>\n",
|
| 535 |
+
" <td>535</td>\n",
|
| 536 |
+
" <td>Granbury, TX</td>\n",
|
| 537 |
" <td>msa</td>\n",
|
| 538 |
+
" <td>TX</td>\n",
|
| 539 |
+
" <td>all homes</td>\n",
|
|
|
|
| 540 |
" <td>2023-11-30</td>\n",
|
| 541 |
+
" <td>NaN</td>\n",
|
| 542 |
+
" <td>NaN</td>\n",
|
| 543 |
+
" <td>16.0</td>\n",
|
| 544 |
" </tr>\n",
|
| 545 |
" </tbody>\n",
|
| 546 |
"</table>\n",
|
| 547 |
+
"<p>49487 rows × 10 columns</p>\n",
|
| 548 |
"</div>"
|
| 549 |
],
|
| 550 |
"text/plain": [
|
| 551 |
+
" Region ID Size Rank Region Region Type State \\\n",
|
| 552 |
+
"0 102001 0 United States country NaN \n",
|
| 553 |
+
"1 102001 0 United States country NaN \n",
|
| 554 |
+
"2 102001 0 United States country NaN \n",
|
| 555 |
+
"3 102001 0 United States country NaN \n",
|
| 556 |
+
"4 102001 0 United States country NaN \n",
|
| 557 |
+
"... ... ... ... ... ... \n",
|
| 558 |
+
"49482 845162 535 Granbury, TX msa TX \n",
|
| 559 |
+
"49483 845162 535 Granbury, TX msa TX \n",
|
| 560 |
+
"49484 845162 535 Granbury, TX msa TX \n",
|
| 561 |
+
"49485 845162 535 Granbury, TX msa TX \n",
|
| 562 |
+
"49486 845162 535 Granbury, TX msa TX \n",
|
| 563 |
"\n",
|
| 564 |
+
" Home Type Date Sale Price Sale Price per Sqft Count \n",
|
| 565 |
+
"0 SFR 2018-01-31 309000.0 137.412316 33940.0 \n",
|
| 566 |
+
"1 all homes 2018-01-31 314596.0 140.504620 37135.0 \n",
|
| 567 |
+
"2 condo/co-op only 2018-01-31 388250.0 238.300000 3195.0 \n",
|
| 568 |
+
"3 SFR 2018-02-28 309072.5 137.199170 33304.0 \n",
|
| 569 |
+
"4 all homes 2018-02-28 314608.0 140.304966 36493.0 \n",
|
| 570 |
+
"... ... ... ... ... ... \n",
|
| 571 |
+
"49482 all homes 2023-09-30 NaN NaN 26.0 \n",
|
| 572 |
+
"49483 SFR 2023-10-31 NaN NaN 24.0 \n",
|
| 573 |
+
"49484 all homes 2023-10-31 NaN NaN 24.0 \n",
|
| 574 |
+
"49485 SFR 2023-11-30 NaN NaN 16.0 \n",
|
| 575 |
+
"49486 all homes 2023-11-30 NaN NaN 16.0 \n",
|
| 576 |
"\n",
|
| 577 |
+
"[49487 rows x 10 columns]"
|
| 578 |
]
|
| 579 |
},
|
| 580 |
+
"execution_count": 48,
|
| 581 |
"metadata": {},
|
| 582 |
"output_type": "execute_result"
|
| 583 |
}
|
|
|
|
| 599 |
},
|
| 600 |
{
|
| 601 |
"cell_type": "code",
|
| 602 |
+
"execution_count": 49,
|
| 603 |
"metadata": {},
|
| 604 |
"outputs": [],
|
| 605 |
"source": [
|
|
|
|
| 608 |
"\n",
|
| 609 |
"final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)"
|
| 610 |
]
|
| 611 |
+
},
|
| 612 |
+
{
|
| 613 |
+
"cell_type": "code",
|
| 614 |
+
"execution_count": null,
|
| 615 |
+
"metadata": {},
|
| 616 |
+
"outputs": [],
|
| 617 |
+
"source": []
|
| 618 |
}
|
| 619 |
],
|
| 620 |
"metadata": {
|
zillow.py
CHANGED
|
@@ -133,7 +133,11 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
| 133 |
"Value Type": datasets.Value(dtype="string", id="Value Type"),
|
| 134 |
"Home Type": datasets.Value(dtype="string", id="Home Type"),
|
| 135 |
"Date": datasets.Value(dtype="string", id="Date"),
|
| 136 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
# These are the features of your dataset like images, labels ...
|
| 138 |
}
|
| 139 |
)
|
|
@@ -253,7 +257,9 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
| 253 |
"Value Type": data["Value Type"],
|
| 254 |
"Home Type": data["Home Type"],
|
| 255 |
"Date": data["Date"],
|
| 256 |
-
"
|
|
|
|
|
|
|
| 257 |
# "answer": "" if split == "test" else data["answer"],
|
| 258 |
}
|
| 259 |
# else:
|
|
|
|
| 133 |
"Value Type": datasets.Value(dtype="string", id="Value Type"),
|
| 134 |
"Home Type": datasets.Value(dtype="string", id="Home Type"),
|
| 135 |
"Date": datasets.Value(dtype="string", id="Date"),
|
| 136 |
+
"Sale Price": datasets.Value(dtype="float32", id="Sale Price"),
|
| 137 |
+
"Sale Price per Sqft": datasets.Value(
|
| 138 |
+
dtype="float32", id="Sale Price per Sqft"
|
| 139 |
+
),
|
| 140 |
+
"Count": datasets.Value(dtype="int32", id="Count"),
|
| 141 |
# These are the features of your dataset like images, labels ...
|
| 142 |
}
|
| 143 |
)
|
|
|
|
| 257 |
"Value Type": data["Value Type"],
|
| 258 |
"Home Type": data["Home Type"],
|
| 259 |
"Date": data["Date"],
|
| 260 |
+
"Sale Price": data["Sale Price"],
|
| 261 |
+
"Sale Price per Sqft": data["Sale Price per Sqft"],
|
| 262 |
+
"Count": data["Count"],
|
| 263 |
# "answer": "" if split == "test" else data["answer"],
|
| 264 |
}
|
| 265 |
# else:
|