fix: update checker and remove old files
Browse files- checker.ipynb +140 -491
- processed/days_on_market/final.jsonl +0 -3
- processed/for_sale_listings/final.jsonl +0 -3
- processed/home_values/final.jsonl +0 -3
- processed/home_values_forecasts/final.jsonl +0 -3
- processed/new_construction/final.jsonl +0 -3
- processed/rentals/final.jsonl +0 -3
- processed/sales/final.jsonl +0 -3
checker.ipynb
CHANGED
|
@@ -2,479 +2,107 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
| 9 |
-
"# import json as pandas\n",
|
| 10 |
-
"import pandas as pd"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
]
|
| 12 |
},
|
| 13 |
{
|
| 14 |
"cell_type": "code",
|
| 15 |
-
"execution_count":
|
| 16 |
"metadata": {},
|
| 17 |
-
"outputs": [
|
| 18 |
-
{
|
| 19 |
-
"data": {
|
| 20 |
-
"text/html": [
|
| 21 |
-
"<div>\n",
|
| 22 |
-
"<style scoped>\n",
|
| 23 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
| 24 |
-
" vertical-align: middle;\n",
|
| 25 |
-
" }\n",
|
| 26 |
-
"\n",
|
| 27 |
-
" .dataframe tbody tr th {\n",
|
| 28 |
-
" vertical-align: top;\n",
|
| 29 |
-
" }\n",
|
| 30 |
-
"\n",
|
| 31 |
-
" .dataframe thead th {\n",
|
| 32 |
-
" text-align: right;\n",
|
| 33 |
-
" }\n",
|
| 34 |
-
"</style>\n",
|
| 35 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 36 |
-
" <thead>\n",
|
| 37 |
-
" <tr style=\"text-align: right;\">\n",
|
| 38 |
-
" <th></th>\n",
|
| 39 |
-
" <th>Region ID</th>\n",
|
| 40 |
-
" <th>Size Rank</th>\n",
|
| 41 |
-
" <th>Region</th>\n",
|
| 42 |
-
" <th>Region Type</th>\n",
|
| 43 |
-
" <th>State</th>\n",
|
| 44 |
-
" <th>Home Type</th>\n",
|
| 45 |
-
" <th>Date</th>\n",
|
| 46 |
-
" <th>Median Sale to List Ratio</th>\n",
|
| 47 |
-
" <th>Median Sale Price</th>\n",
|
| 48 |
-
" <th>Median Sale Price (Smoothed) (Seasonally Adjusted)</th>\n",
|
| 49 |
-
" <th>Median Sale Price (Smoothed)</th>\n",
|
| 50 |
-
" <th>% Sold Below List (Smoothed)</th>\n",
|
| 51 |
-
" <th>Median Sale to List Ratio (Smoothed)</th>\n",
|
| 52 |
-
" <th>% Sold Above List</th>\n",
|
| 53 |
-
" <th>Mean Sale to List Ratio (Smoothed)</th>\n",
|
| 54 |
-
" <th>Mean Sale to List Ratio</th>\n",
|
| 55 |
-
" <th>% Sold Below List</th>\n",
|
| 56 |
-
" <th>% Sold Above List (Smoothed)</th>\n",
|
| 57 |
-
" </tr>\n",
|
| 58 |
-
" </thead>\n",
|
| 59 |
-
" <tbody>\n",
|
| 60 |
-
" <tr>\n",
|
| 61 |
-
" <th>0</th>\n",
|
| 62 |
-
" <td>102001</td>\n",
|
| 63 |
-
" <td>0</td>\n",
|
| 64 |
-
" <td>United States</td>\n",
|
| 65 |
-
" <td>country</td>\n",
|
| 66 |
-
" <td>None</td>\n",
|
| 67 |
-
" <td>SFR</td>\n",
|
| 68 |
-
" <td>2008-02-02</td>\n",
|
| 69 |
-
" <td>NaN</td>\n",
|
| 70 |
-
" <td>172000.0</td>\n",
|
| 71 |
-
" <td>NaN</td>\n",
|
| 72 |
-
" <td>NaN</td>\n",
|
| 73 |
-
" <td>NaN</td>\n",
|
| 74 |
-
" <td>NaN</td>\n",
|
| 75 |
-
" <td>NaN</td>\n",
|
| 76 |
-
" <td>NaN</td>\n",
|
| 77 |
-
" <td>NaN</td>\n",
|
| 78 |
-
" <td>NaN</td>\n",
|
| 79 |
-
" <td>NaN</td>\n",
|
| 80 |
-
" </tr>\n",
|
| 81 |
-
" <tr>\n",
|
| 82 |
-
" <th>1</th>\n",
|
| 83 |
-
" <td>102001</td>\n",
|
| 84 |
-
" <td>0</td>\n",
|
| 85 |
-
" <td>United States</td>\n",
|
| 86 |
-
" <td>country</td>\n",
|
| 87 |
-
" <td>None</td>\n",
|
| 88 |
-
" <td>SFR</td>\n",
|
| 89 |
-
" <td>2008-02-09</td>\n",
|
| 90 |
-
" <td>NaN</td>\n",
|
| 91 |
-
" <td>165400.0</td>\n",
|
| 92 |
-
" <td>NaN</td>\n",
|
| 93 |
-
" <td>NaN</td>\n",
|
| 94 |
-
" <td>NaN</td>\n",
|
| 95 |
-
" <td>NaN</td>\n",
|
| 96 |
-
" <td>NaN</td>\n",
|
| 97 |
-
" <td>NaN</td>\n",
|
| 98 |
-
" <td>NaN</td>\n",
|
| 99 |
-
" <td>NaN</td>\n",
|
| 100 |
-
" <td>NaN</td>\n",
|
| 101 |
-
" </tr>\n",
|
| 102 |
-
" <tr>\n",
|
| 103 |
-
" <th>2</th>\n",
|
| 104 |
-
" <td>102001</td>\n",
|
| 105 |
-
" <td>0</td>\n",
|
| 106 |
-
" <td>United States</td>\n",
|
| 107 |
-
" <td>country</td>\n",
|
| 108 |
-
" <td>None</td>\n",
|
| 109 |
-
" <td>SFR</td>\n",
|
| 110 |
-
" <td>2008-02-16</td>\n",
|
| 111 |
-
" <td>NaN</td>\n",
|
| 112 |
-
" <td>168000.0</td>\n",
|
| 113 |
-
" <td>NaN</td>\n",
|
| 114 |
-
" <td>NaN</td>\n",
|
| 115 |
-
" <td>NaN</td>\n",
|
| 116 |
-
" <td>NaN</td>\n",
|
| 117 |
-
" <td>NaN</td>\n",
|
| 118 |
-
" <td>NaN</td>\n",
|
| 119 |
-
" <td>NaN</td>\n",
|
| 120 |
-
" <td>NaN</td>\n",
|
| 121 |
-
" <td>NaN</td>\n",
|
| 122 |
-
" </tr>\n",
|
| 123 |
-
" <tr>\n",
|
| 124 |
-
" <th>3</th>\n",
|
| 125 |
-
" <td>102001</td>\n",
|
| 126 |
-
" <td>0</td>\n",
|
| 127 |
-
" <td>United States</td>\n",
|
| 128 |
-
" <td>country</td>\n",
|
| 129 |
-
" <td>None</td>\n",
|
| 130 |
-
" <td>SFR</td>\n",
|
| 131 |
-
" <td>2008-02-23</td>\n",
|
| 132 |
-
" <td>NaN</td>\n",
|
| 133 |
-
" <td>167600.0</td>\n",
|
| 134 |
-
" <td>NaN</td>\n",
|
| 135 |
-
" <td>167600.0</td>\n",
|
| 136 |
-
" <td>NaN</td>\n",
|
| 137 |
-
" <td>NaN</td>\n",
|
| 138 |
-
" <td>NaN</td>\n",
|
| 139 |
-
" <td>NaN</td>\n",
|
| 140 |
-
" <td>NaN</td>\n",
|
| 141 |
-
" <td>NaN</td>\n",
|
| 142 |
-
" <td>NaN</td>\n",
|
| 143 |
-
" </tr>\n",
|
| 144 |
-
" <tr>\n",
|
| 145 |
-
" <th>4</th>\n",
|
| 146 |
-
" <td>102001</td>\n",
|
| 147 |
-
" <td>0</td>\n",
|
| 148 |
-
" <td>United States</td>\n",
|
| 149 |
-
" <td>country</td>\n",
|
| 150 |
-
" <td>None</td>\n",
|
| 151 |
-
" <td>SFR</td>\n",
|
| 152 |
-
" <td>2008-03-01</td>\n",
|
| 153 |
-
" <td>NaN</td>\n",
|
| 154 |
-
" <td>168100.0</td>\n",
|
| 155 |
-
" <td>NaN</td>\n",
|
| 156 |
-
" <td>168100.0</td>\n",
|
| 157 |
-
" <td>NaN</td>\n",
|
| 158 |
-
" <td>NaN</td>\n",
|
| 159 |
-
" <td>NaN</td>\n",
|
| 160 |
-
" <td>NaN</td>\n",
|
| 161 |
-
" <td>NaN</td>\n",
|
| 162 |
-
" <td>NaN</td>\n",
|
| 163 |
-
" <td>NaN</td>\n",
|
| 164 |
-
" </tr>\n",
|
| 165 |
-
" <tr>\n",
|
| 166 |
-
" <th>...</th>\n",
|
| 167 |
-
" <td>...</td>\n",
|
| 168 |
-
" <td>...</td>\n",
|
| 169 |
-
" <td>...</td>\n",
|
| 170 |
-
" <td>...</td>\n",
|
| 171 |
-
" <td>...</td>\n",
|
| 172 |
-
" <td>...</td>\n",
|
| 173 |
-
" <td>...</td>\n",
|
| 174 |
-
" <td>...</td>\n",
|
| 175 |
-
" <td>...</td>\n",
|
| 176 |
-
" <td>...</td>\n",
|
| 177 |
-
" <td>...</td>\n",
|
| 178 |
-
" <td>...</td>\n",
|
| 179 |
-
" <td>...</td>\n",
|
| 180 |
-
" <td>...</td>\n",
|
| 181 |
-
" <td>...</td>\n",
|
| 182 |
-
" <td>...</td>\n",
|
| 183 |
-
" <td>...</td>\n",
|
| 184 |
-
" <td>...</td>\n",
|
| 185 |
-
" </tr>\n",
|
| 186 |
-
" <tr>\n",
|
| 187 |
-
" <th>255019</th>\n",
|
| 188 |
-
" <td>845160</td>\n",
|
| 189 |
-
" <td>198</td>\n",
|
| 190 |
-
" <td>Prescott Valley, AZ</td>\n",
|
| 191 |
-
" <td>msa</td>\n",
|
| 192 |
-
" <td>AZ</td>\n",
|
| 193 |
-
" <td>all homes</td>\n",
|
| 194 |
-
" <td>2023-11-11</td>\n",
|
| 195 |
-
" <td>0.985132</td>\n",
|
| 196 |
-
" <td>515000.0</td>\n",
|
| 197 |
-
" <td>480020.0</td>\n",
|
| 198 |
-
" <td>480020.0</td>\n",
|
| 199 |
-
" <td>0.651221</td>\n",
|
| 200 |
-
" <td>0.982460</td>\n",
|
| 201 |
-
" <td>0.080000</td>\n",
|
| 202 |
-
" <td>0.978546</td>\n",
|
| 203 |
-
" <td>0.983288</td>\n",
|
| 204 |
-
" <td>0.680000</td>\n",
|
| 205 |
-
" <td>0.119711</td>\n",
|
| 206 |
-
" </tr>\n",
|
| 207 |
-
" <tr>\n",
|
| 208 |
-
" <th>255020</th>\n",
|
| 209 |
-
" <td>845160</td>\n",
|
| 210 |
-
" <td>198</td>\n",
|
| 211 |
-
" <td>Prescott Valley, AZ</td>\n",
|
| 212 |
-
" <td>msa</td>\n",
|
| 213 |
-
" <td>AZ</td>\n",
|
| 214 |
-
" <td>all homes</td>\n",
|
| 215 |
-
" <td>2023-11-18</td>\n",
|
| 216 |
-
" <td>0.972559</td>\n",
|
| 217 |
-
" <td>510000.0</td>\n",
|
| 218 |
-
" <td>476901.0</td>\n",
|
| 219 |
-
" <td>476901.0</td>\n",
|
| 220 |
-
" <td>0.659583</td>\n",
|
| 221 |
-
" <td>0.980362</td>\n",
|
| 222 |
-
" <td>0.142857</td>\n",
|
| 223 |
-
" <td>0.972912</td>\n",
|
| 224 |
-
" <td>0.958341</td>\n",
|
| 225 |
-
" <td>0.625000</td>\n",
|
| 226 |
-
" <td>0.120214</td>\n",
|
| 227 |
-
" </tr>\n",
|
| 228 |
-
" <tr>\n",
|
| 229 |
-
" <th>255021</th>\n",
|
| 230 |
-
" <td>845160</td>\n",
|
| 231 |
-
" <td>198</td>\n",
|
| 232 |
-
" <td>Prescott Valley, AZ</td>\n",
|
| 233 |
-
" <td>msa</td>\n",
|
| 234 |
-
" <td>AZ</td>\n",
|
| 235 |
-
" <td>all homes</td>\n",
|
| 236 |
-
" <td>2023-11-25</td>\n",
|
| 237 |
-
" <td>0.979644</td>\n",
|
| 238 |
-
" <td>484500.0</td>\n",
|
| 239 |
-
" <td>496540.0</td>\n",
|
| 240 |
-
" <td>496540.0</td>\n",
|
| 241 |
-
" <td>0.669387</td>\n",
|
| 242 |
-
" <td>0.979179</td>\n",
|
| 243 |
-
" <td>0.088235</td>\n",
|
| 244 |
-
" <td>0.971177</td>\n",
|
| 245 |
-
" <td>0.973797</td>\n",
|
| 246 |
-
" <td>0.705882</td>\n",
|
| 247 |
-
" <td>0.107185</td>\n",
|
| 248 |
-
" </tr>\n",
|
| 249 |
-
" <tr>\n",
|
| 250 |
-
" <th>255022</th>\n",
|
| 251 |
-
" <td>845160</td>\n",
|
| 252 |
-
" <td>198</td>\n",
|
| 253 |
-
" <td>Prescott Valley, AZ</td>\n",
|
| 254 |
-
" <td>msa</td>\n",
|
| 255 |
-
" <td>AZ</td>\n",
|
| 256 |
-
" <td>all homes</td>\n",
|
| 257 |
-
" <td>2023-12-02</td>\n",
|
| 258 |
-
" <td>0.978261</td>\n",
|
| 259 |
-
" <td>538000.0</td>\n",
|
| 260 |
-
" <td>510491.0</td>\n",
|
| 261 |
-
" <td>510491.0</td>\n",
|
| 262 |
-
" <td>0.678777</td>\n",
|
| 263 |
-
" <td>0.978899</td>\n",
|
| 264 |
-
" <td>0.126761</td>\n",
|
| 265 |
-
" <td>0.970576</td>\n",
|
| 266 |
-
" <td>0.966876</td>\n",
|
| 267 |
-
" <td>0.704225</td>\n",
|
| 268 |
-
" <td>0.109463</td>\n",
|
| 269 |
-
" </tr>\n",
|
| 270 |
-
" <tr>\n",
|
| 271 |
-
" <th>255023</th>\n",
|
| 272 |
-
" <td>845160</td>\n",
|
| 273 |
-
" <td>198</td>\n",
|
| 274 |
-
" <td>Prescott Valley, AZ</td>\n",
|
| 275 |
-
" <td>msa</td>\n",
|
| 276 |
-
" <td>AZ</td>\n",
|
| 277 |
-
" <td>all homes</td>\n",
|
| 278 |
-
" <td>2023-12-09</td>\n",
|
| 279 |
-
" <td>0.981498</td>\n",
|
| 280 |
-
" <td>485000.0</td>\n",
|
| 281 |
-
" <td>503423.0</td>\n",
|
| 282 |
-
" <td>503423.0</td>\n",
|
| 283 |
-
" <td>0.658777</td>\n",
|
| 284 |
-
" <td>0.977990</td>\n",
|
| 285 |
-
" <td>0.100000</td>\n",
|
| 286 |
-
" <td>0.970073</td>\n",
|
| 287 |
-
" <td>0.981278</td>\n",
|
| 288 |
-
" <td>0.600000</td>\n",
|
| 289 |
-
" <td>0.114463</td>\n",
|
| 290 |
-
" </tr>\n",
|
| 291 |
-
" </tbody>\n",
|
| 292 |
-
"</table>\n",
|
| 293 |
-
"<p>255024 rows Γ 18 columns</p>\n",
|
| 294 |
-
"</div>"
|
| 295 |
-
],
|
| 296 |
-
"text/plain": [
|
| 297 |
-
" Region ID Size Rank Region Region Type State \\\n",
|
| 298 |
-
"0 102001 0 United States country None \n",
|
| 299 |
-
"1 102001 0 United States country None \n",
|
| 300 |
-
"2 102001 0 United States country None \n",
|
| 301 |
-
"3 102001 0 United States country None \n",
|
| 302 |
-
"4 102001 0 United States country None \n",
|
| 303 |
-
"... ... ... ... ... ... \n",
|
| 304 |
-
"255019 845160 198 Prescott Valley, AZ msa AZ \n",
|
| 305 |
-
"255020 845160 198 Prescott Valley, AZ msa AZ \n",
|
| 306 |
-
"255021 845160 198 Prescott Valley, AZ msa AZ \n",
|
| 307 |
-
"255022 845160 198 Prescott Valley, AZ msa AZ \n",
|
| 308 |
-
"255023 845160 198 Prescott Valley, AZ msa AZ \n",
|
| 309 |
-
"\n",
|
| 310 |
-
" Home Type Date Median Sale to List Ratio Median Sale Price \\\n",
|
| 311 |
-
"0 SFR 2008-02-02 NaN 172000.0 \n",
|
| 312 |
-
"1 SFR 2008-02-09 NaN 165400.0 \n",
|
| 313 |
-
"2 SFR 2008-02-16 NaN 168000.0 \n",
|
| 314 |
-
"3 SFR 2008-02-23 NaN 167600.0 \n",
|
| 315 |
-
"4 SFR 2008-03-01 NaN 168100.0 \n",
|
| 316 |
-
"... ... ... ... ... \n",
|
| 317 |
-
"255019 all homes 2023-11-11 0.985132 515000.0 \n",
|
| 318 |
-
"255020 all homes 2023-11-18 0.972559 510000.0 \n",
|
| 319 |
-
"255021 all homes 2023-11-25 0.979644 484500.0 \n",
|
| 320 |
-
"255022 all homes 2023-12-02 0.978261 538000.0 \n",
|
| 321 |
-
"255023 all homes 2023-12-09 0.981498 485000.0 \n",
|
| 322 |
-
"\n",
|
| 323 |
-
" Median Sale Price (Smoothed) (Seasonally Adjusted) \\\n",
|
| 324 |
-
"0 NaN \n",
|
| 325 |
-
"1 NaN \n",
|
| 326 |
-
"2 NaN \n",
|
| 327 |
-
"3 NaN \n",
|
| 328 |
-
"4 NaN \n",
|
| 329 |
-
"... ... \n",
|
| 330 |
-
"255019 480020.0 \n",
|
| 331 |
-
"255020 476901.0 \n",
|
| 332 |
-
"255021 496540.0 \n",
|
| 333 |
-
"255022 510491.0 \n",
|
| 334 |
-
"255023 503423.0 \n",
|
| 335 |
-
"\n",
|
| 336 |
-
" Median Sale Price (Smoothed) % Sold Below List (Smoothed) \\\n",
|
| 337 |
-
"0 NaN NaN \n",
|
| 338 |
-
"1 NaN NaN \n",
|
| 339 |
-
"2 NaN NaN \n",
|
| 340 |
-
"3 167600.0 NaN \n",
|
| 341 |
-
"4 168100.0 NaN \n",
|
| 342 |
-
"... ... ... \n",
|
| 343 |
-
"255019 480020.0 0.651221 \n",
|
| 344 |
-
"255020 476901.0 0.659583 \n",
|
| 345 |
-
"255021 496540.0 0.669387 \n",
|
| 346 |
-
"255022 510491.0 0.678777 \n",
|
| 347 |
-
"255023 503423.0 0.658777 \n",
|
| 348 |
-
"\n",
|
| 349 |
-
" Median Sale to List Ratio (Smoothed) % Sold Above List \\\n",
|
| 350 |
-
"0 NaN NaN \n",
|
| 351 |
-
"1 NaN NaN \n",
|
| 352 |
-
"2 NaN NaN \n",
|
| 353 |
-
"3 NaN NaN \n",
|
| 354 |
-
"4 NaN NaN \n",
|
| 355 |
-
"... ... ... \n",
|
| 356 |
-
"255019 0.982460 0.080000 \n",
|
| 357 |
-
"255020 0.980362 0.142857 \n",
|
| 358 |
-
"255021 0.979179 0.088235 \n",
|
| 359 |
-
"255022 0.978899 0.126761 \n",
|
| 360 |
-
"255023 0.977990 0.100000 \n",
|
| 361 |
-
"\n",
|
| 362 |
-
" Mean Sale to List Ratio (Smoothed) Mean Sale to List Ratio \\\n",
|
| 363 |
-
"0 NaN NaN \n",
|
| 364 |
-
"1 NaN NaN \n",
|
| 365 |
-
"2 NaN NaN \n",
|
| 366 |
-
"3 NaN NaN \n",
|
| 367 |
-
"4 NaN NaN \n",
|
| 368 |
-
"... ... ... \n",
|
| 369 |
-
"255019 0.978546 0.983288 \n",
|
| 370 |
-
"255020 0.972912 0.958341 \n",
|
| 371 |
-
"255021 0.971177 0.973797 \n",
|
| 372 |
-
"255022 0.970576 0.966876 \n",
|
| 373 |
-
"255023 0.970073 0.981278 \n",
|
| 374 |
-
"\n",
|
| 375 |
-
" % Sold Below List % Sold Above List (Smoothed) \n",
|
| 376 |
-
"0 NaN NaN \n",
|
| 377 |
-
"1 NaN NaN \n",
|
| 378 |
-
"2 NaN NaN \n",
|
| 379 |
-
"3 NaN NaN \n",
|
| 380 |
-
"4 NaN NaN \n",
|
| 381 |
-
"... ... ... \n",
|
| 382 |
-
"255019 0.680000 0.119711 \n",
|
| 383 |
-
"255020 0.625000 0.120214 \n",
|
| 384 |
-
"255021 0.705882 0.107185 \n",
|
| 385 |
-
"255022 0.704225 0.109463 \n",
|
| 386 |
-
"255023 0.600000 0.114463 \n",
|
| 387 |
-
"\n",
|
| 388 |
-
"[255024 rows x 18 columns]"
|
| 389 |
-
]
|
| 390 |
-
},
|
| 391 |
-
"execution_count": 2,
|
| 392 |
-
"metadata": {},
|
| 393 |
-
"output_type": "execute_result"
|
| 394 |
-
}
|
| 395 |
-
],
|
| 396 |
"source": [
|
| 397 |
-
"
|
| 398 |
-
"
|
| 399 |
-
"x"
|
| 400 |
]
|
| 401 |
},
|
| 402 |
{
|
| 403 |
"cell_type": "code",
|
| 404 |
-
"execution_count":
|
| 405 |
"metadata": {},
|
| 406 |
"outputs": [
|
| 407 |
{
|
| 408 |
-
"
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
"metadata": {},
|
| 415 |
-
"output_type": "execute_result"
|
| 416 |
-
}
|
| 417 |
-
],
|
| 418 |
-
"source": [
|
| 419 |
-
"# get unique values for column\n",
|
| 420 |
-
"x[\"Region Type\"].unique()"
|
| 421 |
-
]
|
| 422 |
-
},
|
| 423 |
-
{
|
| 424 |
-
"cell_type": "code",
|
| 425 |
-
"execution_count": 32,
|
| 426 |
-
"metadata": {},
|
| 427 |
-
"outputs": [
|
| 428 |
{
|
| 429 |
-
"
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
]
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
"source": [
|
| 440 |
-
"x[\"Home Type\"].unique()"
|
| 441 |
-
]
|
| 442 |
-
},
|
| 443 |
-
{
|
| 444 |
-
"cell_type": "code",
|
| 445 |
-
"execution_count": 15,
|
| 446 |
-
"metadata": {},
|
| 447 |
-
"outputs": [
|
| 448 |
{
|
| 449 |
-
"
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
"
|
| 457 |
-
"output_type": "
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 478 |
{
|
| 479 |
"name": "stdout",
|
| 480 |
"output_type": "stream",
|
|
@@ -486,10 +114,47 @@
|
|
| 486 |
"name": "stderr",
|
| 487 |
"output_type": "stream",
|
| 488 |
"text": [
|
| 489 |
-
"Downloading builder script: 100%|ββββββββββ| 26.
|
| 490 |
-
"Downloading readme: 100%|ββββββββββ|
|
| 491 |
-
"Downloading data: 100%|ββββββββββ| 139M/139M [00:04<00:00,
|
| 492 |
-
"Generating train split: 100%|ββββββββββ| 255024/255024 [00:10<00:00,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 493 |
]
|
| 494 |
}
|
| 495 |
],
|
|
@@ -497,13 +162,13 @@
|
|
| 497 |
"dataset_dict = {}\n",
|
| 498 |
"\n",
|
| 499 |
"configs = [\n",
|
| 500 |
-
"
|
| 501 |
-
"
|
| 502 |
-
"
|
| 503 |
-
"
|
|
|
|
|
|
|
| 504 |
" \"sales\",\n",
|
| 505 |
-
" # \"home_values\",\n",
|
| 506 |
-
" # \"days_on_market\",\n",
|
| 507 |
"]\n",
|
| 508 |
"for config in configs:\n",
|
| 509 |
" print(config)\n",
|
|
@@ -513,40 +178,24 @@
|
|
| 513 |
" trust_remote_code=True,\n",
|
| 514 |
" download_mode=\"force_redownload\",\n",
|
| 515 |
" cache_dir=\"./cache\",\n",
|
| 516 |
-
" )"
|
|
|
|
|
|
|
| 517 |
]
|
| 518 |
},
|
| 519 |
{
|
| 520 |
"cell_type": "code",
|
| 521 |
-
"execution_count":
|
| 522 |
"metadata": {},
|
| 523 |
-
"outputs": [
|
| 524 |
-
{
|
| 525 |
-
"ename": "ArrowInvalid",
|
| 526 |
-
"evalue": "Not a Feather V1 or Arrow IPC file",
|
| 527 |
-
"output_type": "error",
|
| 528 |
-
"traceback": [
|
| 529 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 530 |
-
"\u001b[0;31mArrowInvalid\u001b[0m Traceback (most recent call last)",
|
| 531 |
-
"Cell \u001b[0;32mIn[40], line 4\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpyarrow\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mpa\u001b[39;00m\n\u001b[0;32m----> 4\u001b[0m df \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_feather\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 5\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m~/desktop/cache/misikoff___zillow/sales/1.1.0/c70d9545e9cef7612b795e19b5393a565f297e17856ab372df6f4026ecc498ae/zillow-train.arrow\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 6\u001b[0m \u001b[43m)\u001b[49m\n\u001b[1;32m 7\u001b[0m df\n",
|
| 532 |
-
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/pandas/io/feather_format.py:124\u001b[0m, in \u001b[0;36mread_feather\u001b[0;34m(path, columns, use_threads, storage_options, dtype_backend)\u001b[0m\n\u001b[1;32m 120\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m get_handle(\n\u001b[1;32m 121\u001b[0m path, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrb\u001b[39m\u001b[38;5;124m\"\u001b[39m, storage_options\u001b[38;5;241m=\u001b[39mstorage_options, is_text\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m 122\u001b[0m ) \u001b[38;5;28;01mas\u001b[39;00m handles:\n\u001b[1;32m 123\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m dtype_backend \u001b[38;5;129;01mis\u001b[39;00m lib\u001b[38;5;241m.\u001b[39mno_default \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m using_pyarrow_string_dtype():\n\u001b[0;32m--> 124\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfeather\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_feather\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 125\u001b[0m \u001b[43m \u001b[49m\u001b[43mhandles\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43muse_threads\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mbool\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43muse_threads\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 126\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 128\u001b[0m pa_table \u001b[38;5;241m=\u001b[39m feather\u001b[38;5;241m.\u001b[39mread_table(\n\u001b[1;32m 129\u001b[0m handles\u001b[38;5;241m.\u001b[39mhandle, columns\u001b[38;5;241m=\u001b[39mcolumns, use_threads\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mbool\u001b[39m(use_threads)\n\u001b[1;32m 130\u001b[0m )\n\u001b[1;32m 132\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m dtype_backend \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnumpy_nullable\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n",
|
| 533 |
-
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/pyarrow/feather.py:226\u001b[0m, in \u001b[0;36mread_feather\u001b[0;34m(source, columns, use_threads, memory_map, **kwargs)\u001b[0m\n\u001b[1;32m 199\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mread_feather\u001b[39m(source, columns\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, use_threads\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 200\u001b[0m memory_map\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 201\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 202\u001b[0m \u001b[38;5;124;03m Read a pandas.DataFrame from Feather format. To read as pyarrow.Table use\u001b[39;00m\n\u001b[1;32m 203\u001b[0m \u001b[38;5;124;03m feather.read_table.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 224\u001b[0m \u001b[38;5;124;03m The contents of the Feather file as a pandas.DataFrame\u001b[39;00m\n\u001b[1;32m 225\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 226\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m (\u001b[43mread_table\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 227\u001b[0m \u001b[43m \u001b[49m\u001b[43msource\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmemory_map\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmemory_map\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 228\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_threads\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_threads\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mto_pandas(use_threads\u001b[38;5;241m=\u001b[39muse_threads, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs))\n",
|
| 534 |
-
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/pyarrow/feather.py:252\u001b[0m, in \u001b[0;36mread_table\u001b[0;34m(source, columns, memory_map, use_threads)\u001b[0m\n\u001b[1;32m 231\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mread_table\u001b[39m(source, columns\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, memory_map\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, use_threads\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m):\n\u001b[1;32m 232\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 233\u001b[0m \u001b[38;5;124;03m Read a pyarrow.Table from Feather format\u001b[39;00m\n\u001b[1;32m 234\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 250\u001b[0m \u001b[38;5;124;03m The contents of the Feather file as a pyarrow.Table\u001b[39;00m\n\u001b[1;32m 251\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 252\u001b[0m reader \u001b[38;5;241m=\u001b[39m \u001b[43m_feather\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mFeatherReader\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 253\u001b[0m \u001b[43m \u001b[49m\u001b[43msource\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43muse_memory_map\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmemory_map\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43muse_threads\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_threads\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 255\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m columns \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 256\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m reader\u001b[38;5;241m.\u001b[39mread()\n",
|
| 535 |
-
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/pyarrow/_feather.pyx:79\u001b[0m, in \u001b[0;36mpyarrow._feather.FeatherReader.__cinit__\u001b[0;34m()\u001b[0m\n",
|
| 536 |
-
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/pyarrow/error.pxi:154\u001b[0m, in \u001b[0;36mpyarrow.lib.pyarrow_internal_check_status\u001b[0;34m()\u001b[0m\n",
|
| 537 |
-
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/pyarrow/error.pxi:91\u001b[0m, in \u001b[0;36mpyarrow.lib.check_status\u001b[0;34m()\u001b[0m\n",
|
| 538 |
-
"\u001b[0;31mArrowInvalid\u001b[0m: Not a Feather V1 or Arrow IPC file"
|
| 539 |
-
]
|
| 540 |
-
}
|
| 541 |
-
],
|
| 542 |
"source": [
|
| 543 |
-
"import pyarrow as pa\n",
|
| 544 |
"\n",
|
| 545 |
"\n",
|
| 546 |
-
"df = pd.read_feather(\n",
|
| 547 |
-
"
|
| 548 |
-
")\n",
|
| 549 |
-
"df"
|
| 550 |
]
|
| 551 |
},
|
| 552 |
{
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 14,
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
| 9 |
+
"# # import json as pandas\n",
|
| 10 |
+
"# import pandas as pd\n",
|
| 11 |
+
"# # read the data\n",
|
| 12 |
+
"# x = pd.read_json(\"processed/sales/final5.jsonl\", lines=True)\n",
|
| 13 |
+
"# # x\n",
|
| 14 |
+
"# x[\"Region Type\"].unique()\n",
|
| 15 |
+
"# x[\"Home Type\"].unique()\n",
|
| 16 |
+
"# x[\"Bedroom Count\"].unique()"
|
| 17 |
]
|
| 18 |
},
|
| 19 |
{
|
| 20 |
"cell_type": "code",
|
| 21 |
+
"execution_count": 17,
|
| 22 |
"metadata": {},
|
| 23 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
"source": [
|
| 25 |
+
"from datasets import load_dataset\n",
|
| 26 |
+
"from os import path"
|
|
|
|
| 27 |
]
|
| 28 |
},
|
| 29 |
{
|
| 30 |
"cell_type": "code",
|
| 31 |
+
"execution_count": 19,
|
| 32 |
"metadata": {},
|
| 33 |
"outputs": [
|
| 34 |
{
|
| 35 |
+
"name": "stdout",
|
| 36 |
+
"output_type": "stream",
|
| 37 |
+
"text": [
|
| 38 |
+
"home_values_forecasts\n"
|
| 39 |
+
]
|
| 40 |
+
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
{
|
| 42 |
+
"name": "stderr",
|
| 43 |
+
"output_type": "stream",
|
| 44 |
+
"text": [
|
| 45 |
+
"Downloading builder script: 100%|ββββββββββ| 26.9k/26.9k [00:00<00:00, 9.97MB/s]\n",
|
| 46 |
+
"Downloading readme: 100%|ββββββββββ| 24.0k/24.0k [00:00<00:00, 24.7MB/s]\n",
|
| 47 |
+
"Downloading data: 100%|ββββββββββ| 14.1M/14.1M [00:00<00:00, 21.5MB/s]\n",
|
| 48 |
+
"Generating train split: 100%|ββββββββββ| 31854/31854 [00:01<00:00, 26905.24 examples/s]\n",
|
| 49 |
+
"Creating parquet from Arrow format: 100%|ββββββββββ| 32/32 [00:00<00:00, 813.13ba/s]\n"
|
| 50 |
+
]
|
| 51 |
+
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
{
|
| 53 |
+
"name": "stdout",
|
| 54 |
+
"output_type": "stream",
|
| 55 |
+
"text": [
|
| 56 |
+
"new_construction\n"
|
| 57 |
+
]
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"name": "stderr",
|
| 61 |
+
"output_type": "stream",
|
| 62 |
+
"text": [
|
| 63 |
+
"Downloading builder script: 100%|ββββββββββ| 26.9k/26.9k [00:00<00:00, 16.8MB/s]\n",
|
| 64 |
+
"Downloading readme: 100%|ββββββββββ| 24.0k/24.0k [00:00<00:00, 28.7MB/s]\n",
|
| 65 |
+
"Downloading data: 100%|ββββββββββ| 10.9M/10.9M [00:00<00:00, 21.7MB/s]\n",
|
| 66 |
+
"Generating train split: 100%|ββββββββββ| 49487/49487 [00:01<00:00, 38197.59 examples/s]\n",
|
| 67 |
+
"Creating parquet from Arrow format: 100%|ββββββββββ| 50/50 [00:00<00:00, 1691.95ba/s]\n"
|
| 68 |
+
]
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"name": "stdout",
|
| 72 |
+
"output_type": "stream",
|
| 73 |
+
"text": [
|
| 74 |
+
"for_sale_listings\n"
|
| 75 |
+
]
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"name": "stderr",
|
| 79 |
+
"output_type": "stream",
|
| 80 |
+
"text": [
|
| 81 |
+
"Downloading builder script: 100%|ββββββββββ| 26.9k/26.9k [00:00<00:00, 2.19MB/s]\n",
|
| 82 |
+
"Downloading readme: 100%|ββββββββββ| 24.0k/24.0k [00:00<00:00, 19.1MB/s]\n",
|
| 83 |
+
"Downloading data: 100%|ββββββββββ| 180M/180M [00:04<00:00, 37.8MB/s] \n",
|
| 84 |
+
"Generating train split: 100%|ββββββββββ| 578653/578653 [00:18<00:00, 31984.31 examples/s]\n",
|
| 85 |
+
"Creating parquet from Arrow format: 100%|ββββββββββ| 579/579 [00:00<00:00, 1326.61ba/s]\n"
|
| 86 |
+
]
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"name": "stdout",
|
| 90 |
+
"output_type": "stream",
|
| 91 |
+
"text": [
|
| 92 |
+
"rentals\n"
|
| 93 |
+
]
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"name": "stderr",
|
| 97 |
+
"output_type": "stream",
|
| 98 |
+
"text": [
|
| 99 |
+
"Downloading builder script: 100%|ββββββββββ| 26.9k/26.9k [00:00<00:00, 6.31MB/s]\n",
|
| 100 |
+
"Downloading readme: 100%|ββββββββββ| 24.0k/24.0k [00:00<00:00, 15.0MB/s]\n",
|
| 101 |
+
"Downloading data: 100%|ββββββββββ| 447M/447M [00:13<00:00, 32.0MB/s] \n",
|
| 102 |
+
"Generating train split: 100%|ββββββββββ| 1258740/1258740 [00:31<00:00, 40439.23 examples/s]\n",
|
| 103 |
+
"Creating parquet from Arrow format: 100%|ββββββββββ| 1259/1259 [00:00<00:00, 1671.78ba/s]\n"
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
{
|
| 107 |
"name": "stdout",
|
| 108 |
"output_type": "stream",
|
|
|
|
| 114 |
"name": "stderr",
|
| 115 |
"output_type": "stream",
|
| 116 |
"text": [
|
| 117 |
+
"Downloading builder script: 100%|ββββββββββ| 26.9k/26.9k [00:00<00:00, 16.1MB/s]\n",
|
| 118 |
+
"Downloading readme: 100%|ββββββββββ| 24.0k/24.0k [00:00<00:00, 14.9MB/s]\n",
|
| 119 |
+
"Downloading data: 100%|ββββββββββ| 139M/139M [00:04<00:00, 34.1MB/s] \n",
|
| 120 |
+
"Generating train split: 100%|ββββββββββ| 255024/255024 [00:10<00:00, 24278.38 examples/s]\n",
|
| 121 |
+
"Creating parquet from Arrow format: 100%|ββββββββββ| 256/256 [00:00<00:00, 862.81ba/s]\n"
|
| 122 |
+
]
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"name": "stdout",
|
| 126 |
+
"output_type": "stream",
|
| 127 |
+
"text": [
|
| 128 |
+
"home_values\n"
|
| 129 |
+
]
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"name": "stderr",
|
| 133 |
+
"output_type": "stream",
|
| 134 |
+
"text": [
|
| 135 |
+
"Downloading builder script: 100%|ββββββββββ| 26.9k/26.9k [00:00<00:00, 11.3MB/s]\n",
|
| 136 |
+
"Downloading readme: 100%|ββββββββββ| 24.0k/24.0k [00:00<00:00, 12.2MB/s]\n",
|
| 137 |
+
"Downloading data: 100%|ββββββββββ| 41.1M/41.1M [00:01<00:00, 34.2MB/s]\n",
|
| 138 |
+
"Generating train split: 100%|ββββββββββ| 117912/117912 [00:03<00:00, 34804.14 examples/s]\n",
|
| 139 |
+
"Creating parquet from Arrow format: 100%|ββββββββββ| 118/118 [00:00<00:00, 1397.82ba/s]\n"
|
| 140 |
+
]
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"name": "stdout",
|
| 144 |
+
"output_type": "stream",
|
| 145 |
+
"text": [
|
| 146 |
+
"days_on_market\n"
|
| 147 |
+
]
|
| 148 |
+
},
|
| 149 |
+
{
|
| 150 |
+
"name": "stderr",
|
| 151 |
+
"output_type": "stream",
|
| 152 |
+
"text": [
|
| 153 |
+
"Downloading builder script: 100%|ββββββββββ| 26.9k/26.9k [00:00<00:00, 6.99MB/s]\n",
|
| 154 |
+
"Downloading readme: 100%|ββββββββββ| 24.0k/24.0k [00:00<00:00, 8.94MB/s]\n",
|
| 155 |
+
"Downloading data: 100%|ββββββββββ| 229M/229M [00:06<00:00, 36.6MB/s] \n",
|
| 156 |
+
"Generating train split: 100%|ββββββββββ| 586714/586714 [00:18<00:00, 31198.29 examples/s]\n",
|
| 157 |
+
"Creating parquet from Arrow format: 100%|ββββββββββ| 587/587 [00:00<00:00, 1241.06ba/s]\n"
|
| 158 |
]
|
| 159 |
}
|
| 160 |
],
|
|
|
|
| 162 |
"dataset_dict = {}\n",
|
| 163 |
"\n",
|
| 164 |
"configs = [\n",
|
| 165 |
+
" \"days_on_market\",\n",
|
| 166 |
+
" \"for_sale_listings\",\n",
|
| 167 |
+
" \"home_values\",\n",
|
| 168 |
+
" \"home_values_forecasts\",\n",
|
| 169 |
+
" \"new_construction\",\n",
|
| 170 |
+
" \"rentals\",\n",
|
| 171 |
" \"sales\",\n",
|
|
|
|
|
|
|
| 172 |
"]\n",
|
| 173 |
"for config in configs:\n",
|
| 174 |
" print(config)\n",
|
|
|
|
| 178 |
" trust_remote_code=True,\n",
|
| 179 |
" download_mode=\"force_redownload\",\n",
|
| 180 |
" cache_dir=\"./cache\",\n",
|
| 181 |
+
" )\n",
|
| 182 |
+
" filename = path.join(\"parquet_files\", config + \".parquet\")\n",
|
| 183 |
+
" dataset_dict[config][\"train\"].to_parquet(filename)"
|
| 184 |
]
|
| 185 |
},
|
| 186 |
{
|
| 187 |
"cell_type": "code",
|
| 188 |
+
"execution_count": 18,
|
| 189 |
"metadata": {},
|
| 190 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
"source": [
|
| 192 |
+
"# import pyarrow as pa\n",
|
| 193 |
"\n",
|
| 194 |
"\n",
|
| 195 |
+
"# df = pd.read_feather(\n",
|
| 196 |
+
"# \"~/desktop/cache/misikoff___zillow/sales/1.1.0/c70d9545e9cef7612b795e19b5393a565f297e17856ab372df6f4026ecc498ae/zillow-train.arrow\"\n",
|
| 197 |
+
"# )\n",
|
| 198 |
+
"# df"
|
| 199 |
]
|
| 200 |
},
|
| 201 |
{
|
processed/days_on_market/final.jsonl
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:607134c470606d3875fd7085280b21eb51baf66b0942953e2da3f8fe65ef26c6
|
| 3 |
-
size 229118598
|
|
|
|
|
|
|
|
|
|
|
|
processed/for_sale_listings/final.jsonl
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:82e2f1adf3918df297f82737014c71cb514a75212182e214bbcead3ade084392
|
| 3 |
-
size 180206592
|
|
|
|
|
|
|
|
|
|
|
|
processed/home_values/final.jsonl
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:eaff395bc6ab7963818475272261bd80715f6a0d1851400ffb3dc13f19431c36
|
| 3 |
-
size 41145800
|
|
|
|
|
|
|
|
|
|
|
|
processed/home_values_forecasts/final.jsonl
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:9425eefd2f5eb8233d20080b1b730f2026a776fbe9e80498963eeea09cd834c8
|
| 3 |
-
size 14081979
|
|
|
|
|
|
|
|
|
|
|
|
processed/new_construction/final.jsonl
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:31ef12a5f8440835bb2c97292235d2a54543899dad3b8ab3053e57f01345edaf
|
| 3 |
-
size 10937317
|
|
|
|
|
|
|
|
|
|
|
|
processed/rentals/final.jsonl
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:485dc8bf2a2079b34ac5d31d7bce14e84a7fc2684944623f33ec4a720ff8de4f
|
| 3 |
-
size 447425069
|
|
|
|
|
|
|
|
|
|
|
|
processed/sales/final.jsonl
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:c219585a613fd2d8f7dd0fa8059ee961f94f36642aa882d2b785bdc0dd6c3515
|
| 3 |
-
size 139297577
|
|
|
|
|
|
|
|
|
|
|
|