ariG23498 HF Staff commited on
Commit
19d5b55
·
verified ·
1 Parent(s): 7067217

Upload renderartist_Technically-Color-Z-Image-Turbo_0.txt with huggingface_hub

Browse files
renderartist_Technically-Color-Z-Image-Turbo_0.txt CHANGED
@@ -12,7 +12,7 @@ image = pipe(prompt).images[0]
12
 
13
  ERROR:
14
  Traceback (most recent call last):
15
- File "/tmp/renderartist_Technically-Color-Z-Image-Turbo_06ss2qU.py", line 27, in <module>
16
  pipe = DiffusionPipeline.from_pretrained("Tongyi-MAI/Z-Image-Turbo", dtype=torch.bfloat16, device_map="cuda")
17
  File "/tmp/.cache/uv/environments-v2/2ea2351a05ded5c1/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
18
  return fn(*args, **kwargs)
@@ -36,9 +36,22 @@ Traceback (most recent call last):
36
  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
37
  )
38
  ^
39
- File "/tmp/.cache/uv/environments-v2/2ea2351a05ded5c1/lib/python3.13/site-packages/diffusers/models/modeling_utils.py", line 1635, in _load_pretrained_model
40
- _caching_allocator_warmup(model, expanded_device_map, dtype, hf_quantizer)
41
- ~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
42
- File "/tmp/.cache/uv/environments-v2/2ea2351a05ded5c1/lib/python3.13/site-packages/diffusers/models/model_loading_utils.py", line 751, in _caching_allocator_warmup
43
- _ = torch.empty(warmup_elems, dtype=dtype, device=device, requires_grad=False)
44
- torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 11.46 GiB. GPU 0 has a total capacity of 22.03 GiB of which 6.53 GiB is free. Including non-PyTorch memory, this process has 15.50 GiB memory in use. Of the allocated memory 15.30 GiB is allocated by PyTorch, and 17.75 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  ERROR:
14
  Traceback (most recent call last):
15
+ File "/tmp/renderartist_Technically-Color-Z-Image-Turbo_0RwilQp.py", line 27, in <module>
16
  pipe = DiffusionPipeline.from_pretrained("Tongyi-MAI/Z-Image-Turbo", dtype=torch.bfloat16, device_map="cuda")
17
  File "/tmp/.cache/uv/environments-v2/2ea2351a05ded5c1/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
18
  return fn(*args, **kwargs)
 
36
  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
37
  )
38
  ^
39
+ File "/tmp/.cache/uv/environments-v2/2ea2351a05ded5c1/lib/python3.13/site-packages/diffusers/models/modeling_utils.py", line 1678, in _load_pretrained_model
40
+ offload_index, state_dict_index, _mismatched_keys, _error_msgs = load_fn(shard_file)
41
+ ~~~~~~~^^^^^^^^^^^^
42
+ File "/tmp/.cache/uv/environments-v2/2ea2351a05ded5c1/lib/python3.13/site-packages/diffusers/models/model_loading_utils.py", line 367, in _load_shard_file
43
+ offload_index, state_dict_index = load_model_dict_into_meta(
44
+ ~~~~~~~~~~~~~~~~~~~~~~~~~^
45
+ model,
46
+ ^^^^^^
47
+ ...<9 lines>...
48
+ state_dict_folder=state_dict_folder,
49
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
50
+ )
51
+ ^
52
+ File "/tmp/.cache/uv/environments-v2/2ea2351a05ded5c1/lib/python3.13/site-packages/diffusers/models/model_loading_utils.py", line 307, in load_model_dict_into_meta
53
+ set_module_tensor_to_device(model, param_name, param_device, value=param, **set_module_kwargs)
54
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
55
+ File "/tmp/.cache/uv/environments-v2/2ea2351a05ded5c1/lib/python3.13/site-packages/accelerate/utils/modeling.py", line 343, in set_module_tensor_to_device
56
+ new_value = value.to(device, non_blocking=non_blocking)
57
+ torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 150.00 MiB. GPU 0 has a total capacity of 22.03 GiB of which 113.12 MiB is free. Including non-PyTorch memory, this process has 21.92 GiB memory in use. Of the allocated memory 21.61 GiB is allocated by PyTorch, and 123.28 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)