ariG23498 HF Staff commited on
Commit
1afaab1
·
verified ·
1 Parent(s): 7cb544b

Upload Qwen_Qwen-Image-Edit_0.txt with huggingface_hub

Browse files
Files changed (1) hide show
  1. Qwen_Qwen-Image-Edit_0.txt +4 -4
Qwen_Qwen-Image-Edit_0.txt CHANGED
@@ -14,17 +14,17 @@ image = pipe(image=input_image, prompt=prompt).images[0]
14
 
15
  ERROR:
16
  Traceback (most recent call last):
17
- File "/tmp/Qwen_Qwen-Image-Edit_0lO8H5m.py", line 28, in <module>
18
  pipe = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image-Edit", dtype=torch.bfloat16, device_map="cuda")
19
  File "/tmp/.cache/uv/environments-v2/965d8feb124e299f/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
20
  return fn(*args, **kwargs)
21
- File "/tmp/.cache/uv/environments-v2/965d8feb124e299f/lib/python3.13/site-packages/diffusers/pipelines/pipeline_utils.py", line 1025, in from_pretrained
22
  loaded_sub_model = load_sub_model(
23
  library_name=library_name,
24
  ...<21 lines>...
25
  quantization_config=quantization_config,
26
  )
27
- File "/tmp/.cache/uv/environments-v2/965d8feb124e299f/lib/python3.13/site-packages/diffusers/pipelines/pipeline_loading_utils.py", line 860, in load_sub_model
28
  loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
29
  File "/tmp/.cache/uv/environments-v2/965d8feb124e299f/lib/python3.13/site-packages/transformers/modeling_utils.py", line 277, in _wrapper
30
  return func(*args, **kwargs)
@@ -52,4 +52,4 @@ Traceback (most recent call last):
52
  File "/tmp/.cache/uv/environments-v2/965d8feb124e299f/lib/python3.13/site-packages/transformers/modeling_utils.py", line 770, in _load_state_dict_into_meta_model
53
  _load_parameter_into_model(model, param_name, param.to(param_device))
54
  ~~~~~~~~^^^^^^^^^^^^^^
55
- torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 260.00 MiB. GPU 0 has a total capacity of 22.03 GiB of which 33.12 MiB is free. Including non-PyTorch memory, this process has 21.99 GiB memory in use. Of the allocated memory 21.79 GiB is allocated by PyTorch, and 23.18 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
 
14
 
15
  ERROR:
16
  Traceback (most recent call last):
17
+ File "/tmp/Qwen_Qwen-Image-Edit_0vk7PMr.py", line 28, in <module>
18
  pipe = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image-Edit", dtype=torch.bfloat16, device_map="cuda")
19
  File "/tmp/.cache/uv/environments-v2/965d8feb124e299f/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
20
  return fn(*args, **kwargs)
21
+ File "/tmp/.cache/uv/environments-v2/965d8feb124e299f/lib/python3.13/site-packages/diffusers/pipelines/pipeline_utils.py", line 1021, in from_pretrained
22
  loaded_sub_model = load_sub_model(
23
  library_name=library_name,
24
  ...<21 lines>...
25
  quantization_config=quantization_config,
26
  )
27
+ File "/tmp/.cache/uv/environments-v2/965d8feb124e299f/lib/python3.13/site-packages/diffusers/pipelines/pipeline_loading_utils.py", line 876, in load_sub_model
28
  loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
29
  File "/tmp/.cache/uv/environments-v2/965d8feb124e299f/lib/python3.13/site-packages/transformers/modeling_utils.py", line 277, in _wrapper
30
  return func(*args, **kwargs)
 
52
  File "/tmp/.cache/uv/environments-v2/965d8feb124e299f/lib/python3.13/site-packages/transformers/modeling_utils.py", line 770, in _load_state_dict_into_meta_model
53
  _load_parameter_into_model(model, param_name, param.to(param_device))
54
  ~~~~~~~~^^^^^^^^^^^^^^
55
+ torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 260.00 MiB. GPU 0 has a total capacity of 22.03 GiB of which 183.12 MiB is free. Including non-PyTorch memory, this process has 21.85 GiB memory in use. Of the allocated memory 21.56 GiB is allocated by PyTorch, and 112.29 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)