Upload black-forest-labs_FLUX.1-dev_1.txt with huggingface_hub
Browse files
black-forest-labs_FLUX.1-dev_1.txt
CHANGED
|
@@ -1,7 +1,9 @@
|
|
| 1 |
```CODE:
|
|
|
|
| 2 |
from diffusers import DiffusionPipeline
|
| 3 |
|
| 4 |
-
|
|
|
|
| 5 |
|
| 6 |
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
|
| 7 |
image = pipe(prompt).images[0]
|
|
@@ -9,29 +11,8 @@ image = pipe(prompt).images[0]
|
|
| 9 |
|
| 10 |
ERROR:
|
| 11 |
Traceback (most recent call last):
|
| 12 |
-
File "/tmp
|
| 13 |
-
|
| 14 |
-
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/transformers/models/t5/tokenization_t5_fast.py", line 119, in __init__
|
| 15 |
-
super().__init__(
|
| 16 |
-
~~~~~~~~~~~~~~~~^
|
| 17 |
-
vocab_file=vocab_file,
|
| 18 |
-
^^^^^^^^^^^^^^^^^^^^^^
|
| 19 |
-
...<7 lines>...
|
| 20 |
-
**kwargs,
|
| 21 |
-
^^^^^^^^^
|
| 22 |
-
)
|
| 23 |
-
^
|
| 24 |
-
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/transformers/tokenization_utils_fast.py", line 108, in __init__
|
| 25 |
-
raise ValueError(
|
| 26 |
-
...<2 lines>...
|
| 27 |
-
)
|
| 28 |
-
ValueError: Cannot instantiate this tokenizer from a slow version. If it's based on sentencepiece, make sure you have sentencepiece installed.
|
| 29 |
-
|
| 30 |
-
During handling of the above exception, another exception occurred:
|
| 31 |
-
|
| 32 |
-
Traceback (most recent call last):
|
| 33 |
-
File "/tmp/black-forest-labs_FLUX.1-dev_19ZWWzp.py", line 18, in <module>
|
| 34 |
-
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev")
|
| 35 |
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
|
| 36 |
return fn(*args, **kwargs)
|
| 37 |
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/diffusers/pipelines/pipeline_utils.py", line 1025, in from_pretrained
|
|
@@ -42,23 +23,21 @@ Traceback (most recent call last):
|
|
| 42 |
)
|
| 43 |
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/diffusers/pipelines/pipeline_loading_utils.py", line 860, in load_sub_model
|
| 44 |
loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
|
| 45 |
-
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/
|
| 46 |
-
return
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
| 53 |
)
|
| 54 |
^
|
| 55 |
-
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
requires the protobuf library but it was not found in your environment. Check out the instructions on the
|
| 62 |
-
installation page of its repo: https://github.com/protocolbuffers/protobuf/tree/master/python#installation and follow the ones
|
| 63 |
-
that match your environment. Please note that you may need to restart your runtime after installation.
|
| 64 |
-
|
|
|
|
| 1 |
```CODE:
|
| 2 |
+
import torch
|
| 3 |
from diffusers import DiffusionPipeline
|
| 4 |
|
| 5 |
+
# switch to "mps" for apple devices
|
| 6 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", dtype=torch.bfloat16, device_map="cuda")
|
| 7 |
|
| 8 |
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
|
| 9 |
image = pipe(prompt).images[0]
|
|
|
|
| 11 |
|
| 12 |
ERROR:
|
| 13 |
Traceback (most recent call last):
|
| 14 |
+
File "/tmp/black-forest-labs_FLUX.1-dev_1jIfTh2.py", line 25, in <module>
|
| 15 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", dtype=torch.bfloat16, device_map="cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
|
| 17 |
return fn(*args, **kwargs)
|
| 18 |
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/diffusers/pipelines/pipeline_utils.py", line 1025, in from_pretrained
|
|
|
|
| 23 |
)
|
| 24 |
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/diffusers/pipelines/pipeline_loading_utils.py", line 860, in load_sub_model
|
| 25 |
loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
|
| 26 |
+
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
|
| 27 |
+
return fn(*args, **kwargs)
|
| 28 |
+
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/diffusers/models/modeling_utils.py", line 1288, in from_pretrained
|
| 29 |
+
) = cls._load_pretrained_model(
|
| 30 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~~^
|
| 31 |
+
model,
|
| 32 |
+
^^^^^^
|
| 33 |
+
...<13 lines>...
|
| 34 |
+
is_parallel_loading_enabled=is_parallel_loading_enabled,
|
| 35 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 36 |
)
|
| 37 |
^
|
| 38 |
+
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/diffusers/models/modeling_utils.py", line 1537, in _load_pretrained_model
|
| 39 |
+
_caching_allocator_warmup(model, expanded_device_map, dtype, hf_quantizer)
|
| 40 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 41 |
+
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/diffusers/models/model_loading_utils.py", line 754, in _caching_allocator_warmup
|
| 42 |
+
_ = torch.empty(warmup_elems, dtype=dtype, device=device, requires_grad=False)
|
| 43 |
+
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 22.17 GiB. GPU 0 has a total capacity of 22.03 GiB of which 21.84 GiB is free. Including non-PyTorch memory, this process has 186.00 MiB memory in use. Of the allocated memory 0 bytes is allocated by PyTorch, and 0 bytes is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
|
|
|
|
|
|
|
|
|
|
|
|