ariG23498 HF Staff commited on
Commit
b879b4c
·
verified ·
1 Parent(s): b030ff5

Upload nvidia_Nemotron-Cascade-14B-Thinking_0.txt with huggingface_hub

Browse files
nvidia_Nemotron-Cascade-14B-Thinking_0.txt CHANGED
@@ -11,7 +11,7 @@ pipe(messages)
11
 
12
  ERROR:
13
  Traceback (most recent call last):
14
- File "/tmp/nvidia_Nemotron-Cascade-14B-Thinking_0Uk9fdc.py", line 26, in <module>
15
  pipe = pipeline("text-generation", model="nvidia/Nemotron-Cascade-14B-Thinking")
16
  File "/tmp/.cache/uv/environments-v2/d389e4950376e589/lib/python3.13/site-packages/transformers/pipelines/__init__.py", line 1229, in pipeline
17
  return pipeline_class(model=model, framework=framework, task=task, **kwargs)
@@ -50,4 +50,4 @@ Traceback (most recent call last):
50
  ^^^^^^^^^^^^^
51
  )
52
  ^
53
- torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 170.00 MiB. GPU 0 has a total capacity of 22.30 GiB of which 14.69 MiB is free. Process 25878 has 22.28 GiB memory in use. Of the allocated memory 22.04 GiB is allocated by PyTorch, and 1.32 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
 
11
 
12
  ERROR:
13
  Traceback (most recent call last):
14
+ File "/tmp/nvidia_Nemotron-Cascade-14B-Thinking_09L39Jg.py", line 26, in <module>
15
  pipe = pipeline("text-generation", model="nvidia/Nemotron-Cascade-14B-Thinking")
16
  File "/tmp/.cache/uv/environments-v2/d389e4950376e589/lib/python3.13/site-packages/transformers/pipelines/__init__.py", line 1229, in pipeline
17
  return pipeline_class(model=model, framework=framework, task=task, **kwargs)
 
50
  ^^^^^^^^^^^^^
51
  )
52
  ^
53
+ torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 170.00 MiB. GPU 0 has a total capacity of 22.30 GiB of which 14.69 MiB is free. Process 3979209 has 22.28 GiB memory in use. Of the allocated memory 22.04 GiB is allocated by PyTorch, and 1.32 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)