ariG23498 HF Staff commited on
Commit
e32b2e1
·
verified ·
1 Parent(s): 2cb554b

Upload Tongyi-MAI_Z-Image-Turbo_0.txt with huggingface_hub

Browse files
Files changed (1) hide show
  1. Tongyi-MAI_Z-Image-Turbo_0.txt +20 -7
Tongyi-MAI_Z-Image-Turbo_0.txt CHANGED
@@ -11,7 +11,7 @@ image = pipe(prompt).images[0]
11
 
12
  ERROR:
13
  Traceback (most recent call last):
14
- File "/tmp/Tongyi-MAI_Z-Image-Turbo_0QnLco9.py", line 27, in <module>
15
  pipe = DiffusionPipeline.from_pretrained("Tongyi-MAI/Z-Image-Turbo", dtype=torch.bfloat16, device_map="cuda")
16
  File "/tmp/.cache/uv/environments-v2/aa292f16bb0b222a/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
17
  return fn(*args, **kwargs)
@@ -35,9 +35,22 @@ Traceback (most recent call last):
35
  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
36
  )
37
  ^
38
- File "/tmp/.cache/uv/environments-v2/aa292f16bb0b222a/lib/python3.13/site-packages/diffusers/models/modeling_utils.py", line 1635, in _load_pretrained_model
39
- _caching_allocator_warmup(model, expanded_device_map, dtype, hf_quantizer)
40
- ~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
41
- File "/tmp/.cache/uv/environments-v2/aa292f16bb0b222a/lib/python3.13/site-packages/diffusers/models/model_loading_utils.py", line 751, in _caching_allocator_warmup
42
- _ = torch.empty(warmup_elems, dtype=dtype, device=device, requires_grad=False)
43
- torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 11.46 GiB. GPU 0 has a total capacity of 22.03 GiB of which 6.53 GiB is free. Including non-PyTorch memory, this process has 15.50 GiB memory in use. Of the allocated memory 15.30 GiB is allocated by PyTorch, and 17.75 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  ERROR:
13
  Traceback (most recent call last):
14
+ File "/tmp/Tongyi-MAI_Z-Image-Turbo_0e8Vhdm.py", line 27, in <module>
15
  pipe = DiffusionPipeline.from_pretrained("Tongyi-MAI/Z-Image-Turbo", dtype=torch.bfloat16, device_map="cuda")
16
  File "/tmp/.cache/uv/environments-v2/aa292f16bb0b222a/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
17
  return fn(*args, **kwargs)
 
35
  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
36
  )
37
  ^
38
+ File "/tmp/.cache/uv/environments-v2/aa292f16bb0b222a/lib/python3.13/site-packages/diffusers/models/modeling_utils.py", line 1678, in _load_pretrained_model
39
+ offload_index, state_dict_index, _mismatched_keys, _error_msgs = load_fn(shard_file)
40
+ ~~~~~~~^^^^^^^^^^^^
41
+ File "/tmp/.cache/uv/environments-v2/aa292f16bb0b222a/lib/python3.13/site-packages/diffusers/models/model_loading_utils.py", line 367, in _load_shard_file
42
+ offload_index, state_dict_index = load_model_dict_into_meta(
43
+ ~~~~~~~~~~~~~~~~~~~~~~~~~^
44
+ model,
45
+ ^^^^^^
46
+ ...<9 lines>...
47
+ state_dict_folder=state_dict_folder,
48
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
49
+ )
50
+ ^
51
+ File "/tmp/.cache/uv/environments-v2/aa292f16bb0b222a/lib/python3.13/site-packages/diffusers/models/model_loading_utils.py", line 307, in load_model_dict_into_meta
52
+ set_module_tensor_to_device(model, param_name, param_device, value=param, **set_module_kwargs)
53
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
54
+ File "/tmp/.cache/uv/environments-v2/aa292f16bb0b222a/lib/python3.13/site-packages/accelerate/utils/modeling.py", line 343, in set_module_tensor_to_device
55
+ new_value = value.to(device, non_blocking=non_blocking)
56
+ torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 58.00 MiB. GPU 0 has a total capacity of 22.03 GiB of which 17.12 MiB is free. Including non-PyTorch memory, this process has 22.01 GiB memory in use. Of the allocated memory 21.72 GiB is allocated by PyTorch, and 111.56 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)