```CODE: # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("text-generation", model="MiniMaxAI/MiniMax-M2") messages = [ {"role": "user", "content": "Who are you?"}, ] pipe(messages) ``` ERROR: Traceback (most recent call last): File "/tmp/MiniMaxAI_MiniMax-M2_00mS19U.py", line 19, in pipe = pipeline("text-generation", model="MiniMaxAI/MiniMax-M2") File "/tmp/.cache/uv/environments-v2/d3eea229ed2fb556/lib/python3.13/site-packages/transformers/pipelines/__init__.py", line 1027, in pipeline framework, model = infer_framework_load_model( ~~~~~~~~~~~~~~~~~~~~~~~~~~^ adapter_path if adapter_path is not None else model, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ...<5 lines>... **model_kwargs, ^^^^^^^^^^^^^^^ ) ^ File "/tmp/.cache/uv/environments-v2/d3eea229ed2fb556/lib/python3.13/site-packages/transformers/pipelines/base.py", line 333, in infer_framework_load_model raise ValueError( f"Could not load model {model} with any of the following classes: {class_tuple}. See the original errors:\n\n{error}\n" ) ValueError: Could not load model MiniMaxAI/MiniMax-M2 with any of the following classes: (,). See the original errors: while loading with AutoModelForCausalLM, an error is thrown: Traceback (most recent call last): File "/tmp/.cache/uv/environments-v2/d3eea229ed2fb556/lib/python3.13/site-packages/transformers/pipelines/base.py", line 293, in infer_framework_load_model model = model_class.from_pretrained(model, **kwargs) File "/tmp/.cache/uv/environments-v2/d3eea229ed2fb556/lib/python3.13/site-packages/transformers/models/auto/auto_factory.py", line 604, in from_pretrained return model_class.from_pretrained( ~~~~~~~~~~~~~~~~~~~~~~~~~~~^ pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/tmp/.cache/uv/environments-v2/d3eea229ed2fb556/lib/python3.13/site-packages/transformers/modeling_utils.py", line 277, in _wrapper return func(*args, **kwargs) File "/tmp/.cache/uv/environments-v2/d3eea229ed2fb556/lib/python3.13/site-packages/transformers/modeling_utils.py", line 4881, in from_pretrained hf_quantizer, config, dtype, device_map = get_hf_quantizer( ~~~~~~~~~~~~~~~~^ config, quantization_config, dtype, from_tf, from_flax, device_map, weights_only, user_agent ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/tmp/.cache/uv/environments-v2/d3eea229ed2fb556/lib/python3.13/site-packages/transformers/quantizers/auto.py", line 319, in get_hf_quantizer hf_quantizer.validate_environment( ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ dtype=dtype, ^^^^^^^^^^^^ ...<3 lines>... weights_only=weights_only, ^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/tmp/.cache/uv/environments-v2/d3eea229ed2fb556/lib/python3.13/site-packages/transformers/quantizers/quantizer_finegrained_fp8.py", line 48, in validate_environment raise RuntimeError("No GPU or XPU found. A GPU or XPU is needed for FP8 quantization.") RuntimeError: No GPU or XPU found. A GPU or XPU is needed for FP8 quantization. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/tmp/.cache/uv/environments-v2/d3eea229ed2fb556/lib/python3.13/site-packages/transformers/pipelines/base.py", line 311, in infer_framework_load_model model = model_class.from_pretrained(model, **fp32_kwargs) File "/tmp/.cache/uv/environments-v2/d3eea229ed2fb556/lib/python3.13/site-packages/transformers/models/auto/auto_factory.py", line 604, in from_pretrained return model_class.from_pretrained( ~~~~~~~~~~~~~~~~~~~~~~~~~~~^ pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/tmp/.cache/uv/environments-v2/d3eea229ed2fb556/lib/python3.13/site-packages/transformers/modeling_utils.py", line 277, in _wrapper return func(*args, **kwargs) File "/tmp/.cache/uv/environments-v2/d3eea229ed2fb556/lib/python3.13/site-packages/transformers/modeling_utils.py", line 4881, in from_pretrained hf_quantizer, config, dtype, device_map = get_hf_quantizer( ~~~~~~~~~~~~~~~~^ config, quantization_config, dtype, from_tf, from_flax, device_map, weights_only, user_agent ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/tmp/.cache/uv/environments-v2/d3eea229ed2fb556/lib/python3.13/site-packages/transformers/quantizers/auto.py", line 319, in get_hf_quantizer hf_quantizer.validate_environment( ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ dtype=dtype, ^^^^^^^^^^^^ ...<3 lines>... weights_only=weights_only, ^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/tmp/.cache/uv/environments-v2/d3eea229ed2fb556/lib/python3.13/site-packages/transformers/quantizers/quantizer_finegrained_fp8.py", line 48, in validate_environment raise RuntimeError("No GPU or XPU found. A GPU or XPU is needed for FP8 quantization.") RuntimeError: No GPU or XPU found. A GPU or XPU is needed for FP8 quantization.