ariG23498 HF Staff commited on
Commit
6794cb1
Β·
verified Β·
1 Parent(s): 67b9a69

Upload google_embeddinggemma-300m_5.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. google_embeddinggemma-300m_5.py +10 -28
google_embeddinggemma-300m_5.py CHANGED
@@ -11,24 +11,15 @@
11
  # ///
12
 
13
  try:
14
- # The sentences to encode
15
- sentence_high = [
16
- "The chef prepared a delicious meal for the guests.",
17
- "A tasty dinner was cooked by the chef for the visitors."
18
- ]
19
- sentence_medium = [
20
- "She is an expert in machine learning.",
21
- "He has a deep interest in artificial intelligence."
22
- ]
23
- sentence_low = [
24
- "The weather in Tokyo is sunny today.",
25
- "I need to buy groceries for the week."
26
- ]
27
 
28
  for sentence in [sentence_high, sentence_medium, sentence_low]:
29
  print("πŸ™‹β€β™‚οΈ")
30
  print(sentence)
31
- embeddings = model.encode(sentence)
32
  similarities = model.similarity(embeddings[0], embeddings[1])
33
  print("`-> πŸ€– score: ", similarities.numpy()[0][0])
34
  with open('google_embeddinggemma-300m_5.txt', 'w', encoding='utf-8') as f:
@@ -45,24 +36,15 @@ except Exception as e:
45
  with open('google_embeddinggemma-300m_5.txt', 'a', encoding='utf-8') as f:
46
  import traceback
47
  f.write('''```CODE:
48
- # The sentences to encode
49
- sentence_high = [
50
- "The chef prepared a delicious meal for the guests.",
51
- "A tasty dinner was cooked by the chef for the visitors."
52
- ]
53
- sentence_medium = [
54
- "She is an expert in machine learning.",
55
- "He has a deep interest in artificial intelligence."
56
- ]
57
- sentence_low = [
58
- "The weather in Tokyo is sunny today.",
59
- "I need to buy groceries for the week."
60
- ]
61
 
62
  for sentence in [sentence_high, sentence_medium, sentence_low]:
63
  print("πŸ™‹β€β™‚οΈ")
64
  print(sentence)
65
- embeddings = model.encode(sentence)
66
  similarities = model.similarity(embeddings[0], embeddings[1])
67
  print("`-> πŸ€– score: ", similarities.numpy()[0][0])
68
  ```
 
11
  # ///
12
 
13
  try:
14
+ print("Available tasks:")
15
+ for name, prefix in model.prompts.items():
16
+ print(f" {name}: \"{prefix}\"")
17
+ print("-"*80)
 
 
 
 
 
 
 
 
 
18
 
19
  for sentence in [sentence_high, sentence_medium, sentence_low]:
20
  print("πŸ™‹β€β™‚οΈ")
21
  print(sentence)
22
+ embeddings = model.encode(sentence, prompt_name="STS")
23
  similarities = model.similarity(embeddings[0], embeddings[1])
24
  print("`-> πŸ€– score: ", similarities.numpy()[0][0])
25
  with open('google_embeddinggemma-300m_5.txt', 'w', encoding='utf-8') as f:
 
36
  with open('google_embeddinggemma-300m_5.txt', 'a', encoding='utf-8') as f:
37
  import traceback
38
  f.write('''```CODE:
39
+ print("Available tasks:")
40
+ for name, prefix in model.prompts.items():
41
+ print(f" {name}: \"{prefix}\"")
42
+ print("-"*80)
 
 
 
 
 
 
 
 
 
43
 
44
  for sentence in [sentence_high, sentence_medium, sentence_low]:
45
  print("πŸ™‹β€β™‚οΈ")
46
  print(sentence)
47
+ embeddings = model.encode(sentence, prompt_name="STS")
48
  similarities = model.similarity(embeddings[0], embeddings[1])
49
  print("`-> πŸ€– score: ", similarities.numpy()[0][0])
50
  ```