Jamari's picture
current file used to run the benchmark (returns a json you pass to assess.py)
b89b366 verified
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
from PIL import Image
import requests
import torch
import json
import re
import os
from torch.nn.utils.rnn import pad_sequence
from datasets import load_dataset
import re
dataset = load_dataset('moondream/analog-clock-benchmark', split='test', streaming=True)
result_location = './molmo-answers.json'
model_path = 'moondream/Molmo-72B-0924'
processor = AutoProcessor.from_pretrained(
model_path,
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
model = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
def extract_points_and_text(input_string):
# match the points attributes with single or double quotes
points_pattern = r'(?:x|y)(\d*)=["\']?([\d.]+)["\']?'
matches = re.findall(points_pattern, input_string)
# Group matches by their index (or empty string if no index)
point_dict = {}
for index, value in matches:
point_dict.setdefault(index, []).append(float(value))
# Convert matches to the desired format
points = [point for point in point_dict.values() if len(point) == 2]
text_pattern = r'<(?:point|points)[^>]*>(.*?)</(?:point|points)>'
text_match = re.search(text_pattern, input_string)
text = text_match.group(1) if text_match else ""
cleaned_string = re.sub(text_pattern, text, input_string)
# Find all integers in the cleaned string
answers = [int(num) for num in re.findall(r'\b\d+\b', cleaned_string)]
result = {
"points": points,
"cleaned_string": cleaned_string,
"answers": answers
}
return result
def do_inference(image, text):
inputs = processor.process(
images=[image],
text=text
)
# move inputs to the correct device and make a batch of size 1
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
# generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated
inputs["images"] = inputs["images"].to(torch.float16)
output = model.generate_from_batch(
inputs,
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>", attention_type='flash'),
tokenizer=processor.tokenizer
)
# only get generated tokens; decode them to text
generated_tokens = output[0,inputs['input_ids'].size(1):]
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
return generated_text
# cleaned_obj = extract_points_and_text(generated_text)
# return cleaned_obj
# create results file if it doesn't exist
if not os.path.exists(result_location):
os.makedirs(os.path.dirname(result_location), exist_ok=True)
with open(result_location, 'w') as file:
json.dump([], file)
def has_one_clock(image):
molmo_res_text = do_inference(image, 'How many clocks are in this image?')
print('Clock count -> ', molmo_res_text)
if molmo_res_text.strip().endswith("1.") and molmo_res_text.strip().startswith(" Counting the"):
return True
else:
return False
def get_time(image):
return do_inference(image, '''Look at this image with a readable clock and do the following:
1. Report the hour hand location
2. Report the minute hand location
3. Report the time based on these locations''')
# Create progress bar
datapoint_index = 0
for datapoint in dataset:
molmo_time_string = get_time(datapoint['image'])
print(molmo_time_string)
print('\n\n\n\n\n')
#skip if the string is empty or function returned false (molmo could not tell the time)
# Check if molmo_time_string contains exactly one time formatted as HH:MM
time_pattern = r'\b\d{1,2}:\d{2}\b'
times_found = re.findall(time_pattern, molmo_time_string)
if len(times_found) == 1 and times_found[0] != "10:10":
obj_to_save = {
'datapoint_index': datapoint_index,
'correct_answer': molmo_time_string,
'reported_times': times_found,
'llm_string': molmo_time_string
}
with open(result_location, 'r+') as file:
data = json.load(file)
data.append(obj_to_save)
file.seek(0)
json.dump(data, file, indent=4)
file.truncate()