TrieTran
commited on
Upload folder using huggingface_hub
Browse files- hdf5_data/hdf5_maker.py +526 -0
- hdf5_data/hdf5_merger.py +110 -0
- hdf5_data/task1-annotations.mp4 +3 -0
- hdf5_data/task2-annotations.mp4 +3 -0
- hdf5_data/task3-annotations.mp4 +3 -0
hdf5_data/hdf5_maker.py
ADDED
|
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Convert a single task folder with sequences into LIBERO-like demos with fields:
|
| 3 |
+
|
| 4 |
+
actions, gripper_states, joint_states, robot_states, ee_states,
|
| 5 |
+
agentview_images, eye_in_hand_images, agentview_depths, eye_in_hand_depths,
|
| 6 |
+
agentview_segs, eye_in_hand_segs, agentview_boxes, eye_in_hand_boxes,
|
| 7 |
+
rewards, dones
|
| 8 |
+
|
| 9 |
+
Expected layout (per task):
|
| 10 |
+
taskX/
|
| 11 |
+
success/
|
| 12 |
+
<seq_name>/
|
| 13 |
+
camera_base.mp4 # agentview RGB
|
| 14 |
+
camera_wrist.mp4 # eye-in-hand RGB
|
| 15 |
+
trajectory.pkl # dict-like (see below)
|
| 16 |
+
masks/
|
| 17 |
+
<seq_name>/
|
| 18 |
+
masks/
|
| 19 |
+
000000_id1.png, 000000_id2.png, 000001_id1.png, ...
|
| 20 |
+
|
| 21 |
+
We infer T (timesteps) from trajectory.pkl (preferred keys: robot_gripper_pose, timestamp).
|
| 22 |
+
We parse mask PNGs named "{frame:06d}_id{instance}.png" into a per-frame label map,
|
| 23 |
+
and compute per-frame boxes per instance id.
|
| 24 |
+
|
| 25 |
+
Trajectory .pkl keys (examples):
|
| 26 |
+
['robot_eef_pose', 'robot_eef_pose_vel', 'robot_joint', 'robot_joint_vel',
|
| 27 |
+
'robot_gripper_pose', 'timestamp', 'task_description']
|
| 28 |
+
|
| 29 |
+
Actions policy:
|
| 30 |
+
- If 'robot_joint_vel' exists: actions = robot_joint_vel (T, DoF)
|
| 31 |
+
- Else if 'robot_eef_pose_vel' exists: actions = robot_eef_pose_vel (T, 6/7)
|
| 32 |
+
- Else: finite-difference of 'robot_joint' (pad last row with zeros).
|
| 33 |
+
|
| 34 |
+
Depth and eye-in-hand segs:
|
| 35 |
+
- If no depth available, we create zero arrays with the correct length and frame shape.
|
| 36 |
+
- If only one set of masks exists (agentview), we mirror it to eye-in-hand segs for compatibility.
|
| 37 |
+
|
| 38 |
+
Boxes:
|
| 39 |
+
- Stored in metainfo JSON as lists of [x1,y1,x2,y2] per frame (pixel coords).
|
| 40 |
+
|
| 41 |
+
Requires: numpy, opencv-python, h5py, pillow (PIL)
|
| 42 |
+
"""
|
| 43 |
+
import argparse, json, os, pickle, re, sys
|
| 44 |
+
from dataclasses import dataclass
|
| 45 |
+
from pathlib import Path
|
| 46 |
+
from typing import List, Tuple, Dict, Sequence, Optional, Any
|
| 47 |
+
import imageio
|
| 48 |
+
|
| 49 |
+
import numpy as np
|
| 50 |
+
import h5py
|
| 51 |
+
import cv2
|
| 52 |
+
|
| 53 |
+
from PIL import Image
|
| 54 |
+
|
| 55 |
+
MASK_RE = re.compile(r'^(?P<frame>\d+)_id(?P<inst>\d+)\.(?:png|jpg|jpeg|bmp)$', re.IGNORECASE)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
# ---------- helpers ----------
|
| 59 |
+
def _ensure_uint8_rgb(img: np.ndarray) -> np.ndarray:
|
| 60 |
+
arr = np.asarray(img)
|
| 61 |
+
if arr.ndim == 2: arr = np.stack([arr]*3, axis=-1)
|
| 62 |
+
if arr.shape[-1] == 4: arr = arr[..., :3]
|
| 63 |
+
if arr.dtype != np.uint8:
|
| 64 |
+
if np.issubdtype(arr.dtype, np.floating) and arr.max() <= 1.0:
|
| 65 |
+
arr = (arr * 255.0 + 0.5).astype(np.uint8)
|
| 66 |
+
else:
|
| 67 |
+
arr = np.clip(arr, 0, 255).astype(np.uint8)
|
| 68 |
+
return arr
|
| 69 |
+
|
| 70 |
+
def _label_to_color(label_map: np.ndarray,
|
| 71 |
+
color_map: Optional[Dict[int, Tuple[int,int,int]]] = None):
|
| 72 |
+
H, W = label_map.shape
|
| 73 |
+
colored = np.zeros((H, W, 3), dtype=np.uint8)
|
| 74 |
+
color_map = {} if color_map is None else dict(color_map)
|
| 75 |
+
for lid in np.unique(label_map):
|
| 76 |
+
if lid == 0: continue
|
| 77 |
+
if lid not in color_map:
|
| 78 |
+
rng = np.random.RandomState(lid * 9973 % (2**31-1))
|
| 79 |
+
color_map[lid] = tuple(int(x) for x in rng.randint(40, 220, size=3))
|
| 80 |
+
colored[label_map == lid] = color_map[lid]
|
| 81 |
+
return colored, color_map
|
| 82 |
+
|
| 83 |
+
def _overlay(rgb: np.ndarray, over_rgb: np.ndarray, alpha: float = 0.5) -> np.ndarray:
|
| 84 |
+
out = (1.0 - alpha) * rgb.astype(np.float32) + alpha * over_rgb.astype(np.float32)
|
| 85 |
+
return np.clip(out, 0, 255).astype(np.uint8)
|
| 86 |
+
|
| 87 |
+
def _draw_bboxes(rgb: np.ndarray,
|
| 88 |
+
bboxes: Sequence[Tuple[int, Sequence[int]]],
|
| 89 |
+
color_map: Optional[Dict[int, Tuple[int,int,int]]] = None) -> np.ndarray:
|
| 90 |
+
img = rgb.copy()
|
| 91 |
+
color_map = {} if color_map is None else color_map
|
| 92 |
+
defined_labels = {'id40': 'bottle 1',
|
| 93 |
+
'id20': 'bottle 2',
|
| 94 |
+
'id60': 'bowl 1',
|
| 95 |
+
'id100': 'robot',
|
| 96 |
+
'id80': 'bowl 1'}
|
| 97 |
+
for seg_id, box in bboxes:
|
| 98 |
+
x, y, x2, y2 = [int(v) for v in box]
|
| 99 |
+
if seg_id not in color_map:
|
| 100 |
+
rng = np.random.RandomState(seg_id * 9973 % (2**31-1))
|
| 101 |
+
color_map[seg_id] = tuple(int(x) for x in rng.randint(40, 220, size=3))
|
| 102 |
+
bgr = color_map[seg_id][::-1]
|
| 103 |
+
cv2.rectangle(img, (x, y), (x2, y2), bgr, 2)
|
| 104 |
+
label = defined_labels[f"id{seg_id}"]
|
| 105 |
+
(tw, th), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
| 106 |
+
cv2.rectangle(img, (x, y - th - 4), (x + tw + 4, y), bgr, -1)
|
| 107 |
+
cv2.putText(img, label, (x + 2, y - 4),
|
| 108 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1, cv2.LINE_AA)
|
| 109 |
+
return img
|
| 110 |
+
|
| 111 |
+
# ---------- main ----------
|
| 112 |
+
def save_annotation_video_imageio(
|
| 113 |
+
agentview_images: List[np.ndarray],
|
| 114 |
+
agentview_segs: List[np.ndarray],
|
| 115 |
+
agentview_bboxes: List[List[Tuple[int, Sequence[int]]]],
|
| 116 |
+
out_path: str,
|
| 117 |
+
fps: int = 20,
|
| 118 |
+
resize: Optional[Tuple[int,int]] = None,
|
| 119 |
+
seg_alpha: float = 0.5,
|
| 120 |
+
layout: str = "hstack"
|
| 121 |
+
) -> str:
|
| 122 |
+
"""Save annotated rollout video with raw | bbox | seg-overlay panels using imageio."""
|
| 123 |
+
assert len(agentview_images) == len(agentview_segs) == len(agentview_bboxes)
|
| 124 |
+
T = len(agentview_images)
|
| 125 |
+
if T == 0:
|
| 126 |
+
raise ValueError("No frames to render")
|
| 127 |
+
|
| 128 |
+
imgs = [_ensure_uint8_rgb(f) for f in agentview_images]
|
| 129 |
+
segs = [np.asarray(s, dtype=np.int32) for s in agentview_segs]
|
| 130 |
+
|
| 131 |
+
H, W = imgs[0].shape[:2]
|
| 132 |
+
if resize is not None:
|
| 133 |
+
W, H = resize
|
| 134 |
+
imgs = [cv2.resize(im, (W, H), interpolation=cv2.INTER_LINEAR) for im in imgs]
|
| 135 |
+
segs = [cv2.resize(s, (W, H), interpolation=cv2.INTER_NEAREST) for s in segs]
|
| 136 |
+
else:
|
| 137 |
+
imgs = [cv2.resize(im, (W, H), interpolation=cv2.INTER_LINEAR) if im.shape[:2] != (H, W) else im for im in imgs]
|
| 138 |
+
segs = [cv2.resize(s, (W, H), interpolation=cv2.INTER_NEAREST) if s.shape != (H, W) else s for s in segs]
|
| 139 |
+
|
| 140 |
+
color_map: Dict[int, Tuple[int,int,int]] = {}
|
| 141 |
+
|
| 142 |
+
def compose(t: int) -> np.ndarray:
|
| 143 |
+
raw = imgs[t]
|
| 144 |
+
box_img = _draw_bboxes(raw, agentview_bboxes[t], color_map=color_map)
|
| 145 |
+
seg_col, cm2 = _label_to_color(segs[t], color_map=color_map)
|
| 146 |
+
color_map.update(cm2)
|
| 147 |
+
seg_overlay = _overlay(raw, seg_col, alpha=seg_alpha)
|
| 148 |
+
if layout == "hstack":
|
| 149 |
+
return np.concatenate([raw, box_img, seg_overlay], axis=1)
|
| 150 |
+
else: # grid
|
| 151 |
+
top = np.concatenate([raw, box_img], axis=1)
|
| 152 |
+
bot = np.concatenate([seg_overlay, seg_col], axis=1)
|
| 153 |
+
return np.concatenate([top, bot], axis=0)
|
| 154 |
+
|
| 155 |
+
# --- Use imageio.get_writer ---
|
| 156 |
+
with imageio.get_writer(out_path, fps=fps, codec="libx264") as writer:
|
| 157 |
+
for t in range(T):
|
| 158 |
+
frame = compose(t)
|
| 159 |
+
writer.append_data(frame) # frame must be (H,W,3) uint8
|
| 160 |
+
|
| 161 |
+
return out_path
|
| 162 |
+
|
| 163 |
+
def natural_key(s: str):
|
| 164 |
+
return [int(t) if t.isdigit() else t.lower() for t in re.split(r"(\d+)", s)]
|
| 165 |
+
|
| 166 |
+
def process_gripper_pose(robot_gripper_pose):
|
| 167 |
+
raw = np.array(robot_gripper_pose) # shape (T,)
|
| 168 |
+
# binary states (open=1, closed=0)
|
| 169 |
+
state = raw.astype(np.int32)
|
| 170 |
+
|
| 171 |
+
# deltas using "previous" rule
|
| 172 |
+
delta = np.zeros_like(state[:-1])
|
| 173 |
+
prev = -1
|
| 174 |
+
for t in range(0, len(state)-1):
|
| 175 |
+
if state[t] != state[t+1]:
|
| 176 |
+
delta[t] = 1 if state[t] < state[t+1] else -1
|
| 177 |
+
prev = delta[t]
|
| 178 |
+
else:
|
| 179 |
+
delta[t] = prev # carry forward previous action
|
| 180 |
+
|
| 181 |
+
return delta
|
| 182 |
+
|
| 183 |
+
def process_video_rgb(path: Path) -> List[np.ndarray]:
|
| 184 |
+
if cv2 is None:
|
| 185 |
+
raise RuntimeError("OpenCV not available. Please install opencv-python.")
|
| 186 |
+
cap = cv2.VideoCapture(str(path))
|
| 187 |
+
if not cap.isOpened():
|
| 188 |
+
raise RuntimeError(f"Cannot open video: {path}")
|
| 189 |
+
frames = []
|
| 190 |
+
while True:
|
| 191 |
+
ok, frame = cap.read()
|
| 192 |
+
if not ok:
|
| 193 |
+
break
|
| 194 |
+
# Resize to 256x256 and convert BGR->RGB
|
| 195 |
+
frame = cv2.resize(frame, (256, 256), interpolation=cv2.INTER_LINEAR)
|
| 196 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 197 |
+
frames.append(frame)
|
| 198 |
+
cap.release()
|
| 199 |
+
return frames
|
| 200 |
+
|
| 201 |
+
def parse_masks_dir(H, W, masks_dir: Path) -> Dict[int, Dict[int, np.ndarray]]:
|
| 202 |
+
"""
|
| 203 |
+
Return nested dict: frame_idx -> {inst_id -> binary mask (H,W,1)}
|
| 204 |
+
"""
|
| 205 |
+
out: Dict[int, Dict[int, np.ndarray]] = {}
|
| 206 |
+
for f in sorted(masks_dir.iterdir(), key=lambda x: natural_key(x.name)):
|
| 207 |
+
if not f.is_file(): continue
|
| 208 |
+
m = MASK_RE.match(f.name)
|
| 209 |
+
if not m: continue
|
| 210 |
+
frame = int(m.group("frame"))
|
| 211 |
+
inst = int(m.group("inst"))
|
| 212 |
+
arr = np.array(Image.open(f).convert("L").resize((W, H))) # (H,W) grayscale
|
| 213 |
+
bin_mask = (arr > 0).astype(np.uint8)[..., None] # (H,W,1)
|
| 214 |
+
out.setdefault(frame, {})[inst] = bin_mask
|
| 215 |
+
return out
|
| 216 |
+
|
| 217 |
+
def labelmap_and_boxes(H, W, per_inst: Dict[int, np.ndarray]) -> Tuple[np.ndarray, List[List[int]]]:
|
| 218 |
+
"""
|
| 219 |
+
From {inst_id -> (H,W,1) mask}, build label map (H,W) with labels 30..K*30,
|
| 220 |
+
and compute boxes as [x1,y1,x2,y2] for each instance (label>0), in order of inst_id.
|
| 221 |
+
Returns (labelmap, boxes)
|
| 222 |
+
"""
|
| 223 |
+
if not per_inst:
|
| 224 |
+
return np.zeros((H,W,1), dtype=np.int32), []
|
| 225 |
+
# Determine shape
|
| 226 |
+
labelmap = np.zeros((H,W,1), dtype=np.int32)
|
| 227 |
+
boxes: List[List[int]] = []
|
| 228 |
+
# Sort instances for stable order
|
| 229 |
+
for idx, inst_id in enumerate(sorted(per_inst.keys())):
|
| 230 |
+
m = per_inst[inst_id][..., 0].astype(bool)
|
| 231 |
+
label = (idx + 1)*20 # 0 reserved as background
|
| 232 |
+
labelmap[m] = label
|
| 233 |
+
# Bounding box
|
| 234 |
+
ys, xs = np.where(m)
|
| 235 |
+
if len(xs) == 0 or len(ys) == 0:
|
| 236 |
+
pass
|
| 237 |
+
else:
|
| 238 |
+
x1, x2 = int(xs.min()), int(xs.max())
|
| 239 |
+
y1, y2 = int(ys.min()), int(ys.max())
|
| 240 |
+
boxes.append([label, [x1, y1, x2, y2]])
|
| 241 |
+
return labelmap, boxes
|
| 242 |
+
|
| 243 |
+
def detect_noops_with_gripper_window(
|
| 244 |
+
actions: np.ndarray,
|
| 245 |
+
gripper_col: int = -1,
|
| 246 |
+
tol: float = 1e-6,
|
| 247 |
+
window: int = 6,
|
| 248 |
+
):
|
| 249 |
+
"""
|
| 250 |
+
Return a boolean vector is_noop[T] where True marks a no-op step.
|
| 251 |
+
A step is no-op if (a) all non-gripper dims are ~0 (|x|<tol), and
|
| 252 |
+
(b) it's not within `window` frames after a gripper open/close change.
|
| 253 |
+
|
| 254 |
+
Parameters
|
| 255 |
+
----------
|
| 256 |
+
actions : (T, D) array
|
| 257 |
+
Action vectors over time.
|
| 258 |
+
gripper_col : int
|
| 259 |
+
Index of the gripper signal column (default: last col).
|
| 260 |
+
tol : float
|
| 261 |
+
Tolerance to treat movement dims as zero.
|
| 262 |
+
window : int
|
| 263 |
+
Number of frames after a gripper state change to mark as active (non-noop).
|
| 264 |
+
|
| 265 |
+
Returns
|
| 266 |
+
-------
|
| 267 |
+
is_noop : (T,) bool array
|
| 268 |
+
True where the step is considered a no-op.
|
| 269 |
+
active_gripper_window : (T,) bool array
|
| 270 |
+
True where we are within the post-change window (non-noop region).
|
| 271 |
+
"""
|
| 272 |
+
a = np.asarray(actions)
|
| 273 |
+
assert a.ndim == 2 and a.shape[0] > 0, "actions must be (T, D)"
|
| 274 |
+
T, D = a.shape
|
| 275 |
+
|
| 276 |
+
# 1) movement no-op: all non-gripper dims are near zero
|
| 277 |
+
if gripper_col < 0:
|
| 278 |
+
g_idx = D + gripper_col
|
| 279 |
+
else:
|
| 280 |
+
g_idx = gripper_col
|
| 281 |
+
assert 0 <= g_idx < D
|
| 282 |
+
|
| 283 |
+
if D > 1:
|
| 284 |
+
move = np.concatenate([a[:, :g_idx], a[:, g_idx+1:]], axis=1)
|
| 285 |
+
movement_noop = np.all(np.abs(move) < tol, axis=1)
|
| 286 |
+
else:
|
| 287 |
+
movement_noop = np.ones(T, dtype=bool) # only gripper present
|
| 288 |
+
|
| 289 |
+
# 2) gripper activity window: detect state changes and mark window frames
|
| 290 |
+
g = a[:, g_idx]
|
| 291 |
+
|
| 292 |
+
# Convert to binary state: open=1, closed=0 (by sign/threshold)
|
| 293 |
+
# Works for {-1,0,1} or continuous values (e.g., widths).
|
| 294 |
+
state = (g > 0).astype(np.int8)
|
| 295 |
+
|
| 296 |
+
# Change points where state flips
|
| 297 |
+
changes = np.flatnonzero(np.diff(state, prepend=state[0]) != 0)
|
| 298 |
+
|
| 299 |
+
active_gripper_window = np.zeros(T, dtype=bool)
|
| 300 |
+
for t0 in changes:
|
| 301 |
+
t1 = min(t0 + window, T)
|
| 302 |
+
active_gripper_window[t0:t1] = True
|
| 303 |
+
|
| 304 |
+
# Final no-op = movement_noop and NOT in gripper activity window
|
| 305 |
+
is_noop = movement_noop & (~active_gripper_window)
|
| 306 |
+
return is_noop, active_gripper_window
|
| 307 |
+
|
| 308 |
+
def process_sequence(seq_name: str, task_dir: Path, out_dir: Path, sequence_rename: Path):
|
| 309 |
+
s_dir = task_dir / "success" / seq_name
|
| 310 |
+
m_dir = task_dir / "masks" / seq_name / "masks"
|
| 311 |
+
|
| 312 |
+
# --- Load trajectory ---
|
| 313 |
+
pkl_path = s_dir / "trajectory.pkl"
|
| 314 |
+
with open(pkl_path, "rb") as f:
|
| 315 |
+
traj = pickle.load(f)
|
| 316 |
+
|
| 317 |
+
task_description = traj['task_description'].lower().replace('.', '')
|
| 318 |
+
T = len(traj['robot_eef_pose']) - 1
|
| 319 |
+
|
| 320 |
+
delta_eef = traj['robot_eef_pose'][1:,:] - traj['robot_eef_pose'][:-1,:]
|
| 321 |
+
delta_gripper = process_gripper_pose(traj['robot_gripper_pose'])
|
| 322 |
+
delta_gripper = delta_gripper.reshape(T, 1)
|
| 323 |
+
actions = np.concatenate([delta_eef, delta_gripper], axis=1)
|
| 324 |
+
|
| 325 |
+
# --- Read videos as RGB ---
|
| 326 |
+
base_vid = s_dir / "camera_base.mp4"
|
| 327 |
+
agentview_images = process_video_rgb(base_vid)
|
| 328 |
+
agentview_images = agentview_images[:T]
|
| 329 |
+
H, W, _ = agentview_images[0].shape
|
| 330 |
+
|
| 331 |
+
# --- Parse masks into label maps + boxes ---
|
| 332 |
+
per_frame = parse_masks_dir(H, W, m_dir)
|
| 333 |
+
agentview_segs = []
|
| 334 |
+
agentview_bboxes = []
|
| 335 |
+
|
| 336 |
+
for t, inst_dict in per_frame.items():
|
| 337 |
+
if t >= T: continue
|
| 338 |
+
labelmap, boxes = labelmap_and_boxes(H, W, inst_dict)
|
| 339 |
+
if labelmap.size == 0: # in case masks are missing
|
| 340 |
+
continue
|
| 341 |
+
if (labelmap.shape[0] != H) or (labelmap.shape[1] != W):
|
| 342 |
+
# Resize nearest to match video shape
|
| 343 |
+
labelmap = np.array(Image.fromarray(labelmap.astype(np.int32)).resize((W, H), resample=Image.NEAREST))
|
| 344 |
+
agentview_segs.append(labelmap)
|
| 345 |
+
agentview_bboxes.append(boxes)
|
| 346 |
+
|
| 347 |
+
# save_annotation_video_imageio(
|
| 348 |
+
# agentview_images, agentview_segs, agentview_bboxes,
|
| 349 |
+
# out_path="annotations.mp4", fps=20, resize=(256,256)
|
| 350 |
+
# )
|
| 351 |
+
# 1/0
|
| 352 |
+
# print(len(agentview_images))
|
| 353 |
+
# print(len(agentview_segs))
|
| 354 |
+
# print(len(agentview_bboxes))
|
| 355 |
+
# print(len(actions))
|
| 356 |
+
# print(actions);
|
| 357 |
+
# is_noop, active_win = detect_noops_with_gripper_window(actions, gripper_col=-1, tol=1e-5, window=6)
|
| 358 |
+
data = {
|
| 359 |
+
"episode_key": sequence_rename,
|
| 360 |
+
"agentview_images": agentview_images,
|
| 361 |
+
"agentview_segs": agentview_segs,
|
| 362 |
+
"agentview_boxes": agentview_bboxes,
|
| 363 |
+
"actions": actions,
|
| 364 |
+
"task_description": task_description,
|
| 365 |
+
}
|
| 366 |
+
return data
|
| 367 |
+
|
| 368 |
+
def write_episode(
|
| 369 |
+
out_dir: str,
|
| 370 |
+
task_name: str,
|
| 371 |
+
episode: Dict[str, Any],
|
| 372 |
+
):
|
| 373 |
+
"""
|
| 374 |
+
{
|
| 375 |
+
"episode_key": "20250711-13h_52m_58s",
|
| 376 |
+
"agentview_images": [...], # list[(H,W,3) uint8]
|
| 377 |
+
"agentview_segs": [...], # list[(H,W) int]
|
| 378 |
+
"agentview_boxes": [...], # list[list[(id, [x,y,w,h])]]
|
| 379 |
+
"actions": np.ndarray or None, # (T,D)
|
| 380 |
+
"task_description": "string", # optional
|
| 381 |
+
},
|
| 382 |
+
"""
|
| 383 |
+
episode_key = episode["episode_key"]
|
| 384 |
+
h5_filename = f"{task_name}_{episode_key}.hdf5"
|
| 385 |
+
meta_filename = f"{task_name}_{episode_key}_metainfo.json"
|
| 386 |
+
|
| 387 |
+
h5_path = os.path.join(out_dir, h5_filename)
|
| 388 |
+
meta_path = os.path.join(out_dir, meta_filename)
|
| 389 |
+
|
| 390 |
+
# Load or start metainfo (single JSON for all episodes)
|
| 391 |
+
if os.path.exists(meta_path):
|
| 392 |
+
with open(meta_path, "r") as f:
|
| 393 |
+
metainfo = json.load(f)
|
| 394 |
+
else:
|
| 395 |
+
metainfo = {task_name: {}}
|
| 396 |
+
|
| 397 |
+
with h5py.File(h5_path, "a") as f: # append if file already exists
|
| 398 |
+
root = f.require_group("data")
|
| 399 |
+
ep = episode
|
| 400 |
+
episode_key = ep["episode_key"]
|
| 401 |
+
agentview_images = ep["agentview_images"]
|
| 402 |
+
agentview_segs = ep["agentview_segs"]
|
| 403 |
+
agentview_boxes = ep["agentview_boxes"]
|
| 404 |
+
actions = ep.get("actions", None)
|
| 405 |
+
task_description = ep.get("task_description", "")
|
| 406 |
+
|
| 407 |
+
# --- lengths & alignment ---
|
| 408 |
+
lens = [len(agentview_images), len(agentview_segs), len(agentview_boxes)]
|
| 409 |
+
if actions is not None: lens.append(len(actions))
|
| 410 |
+
T = min(l for l in lens if l > 0)
|
| 411 |
+
assert T > 0, f"[{episode_key}] nothing to write"
|
| 412 |
+
|
| 413 |
+
agentview_images = agentview_images[:T]
|
| 414 |
+
agentview_segs = agentview_segs[:T]
|
| 415 |
+
agentview_boxes = agentview_boxes[:T]
|
| 416 |
+
if actions is None:
|
| 417 |
+
actions = np.zeros((T, 1), dtype=np.float32)
|
| 418 |
+
else:
|
| 419 |
+
actions = np.asarray(actions)[:T]
|
| 420 |
+
|
| 421 |
+
# --- stack visuals ---
|
| 422 |
+
agentview_rgb = np.stack(agentview_images, axis=0) # (T,H,W,3)
|
| 423 |
+
agentview_seg = np.stack([np.asarray(s, dtype=np.int32) for s in agentview_segs], axis=0) # (T,H,W)
|
| 424 |
+
_, H, W, _ = agentview_seg.shape
|
| 425 |
+
|
| 426 |
+
# --- placeholders for missing streams/states ---
|
| 427 |
+
eye_in_hand_rgb = np.zeros_like(agentview_rgb, dtype=np.uint8)
|
| 428 |
+
agentview_depth = np.zeros((T, H, W), dtype=np.float32)
|
| 429 |
+
eye_in_hand_depth = np.zeros((T, H, W), dtype=np.float32)
|
| 430 |
+
eye_in_hand_seg = np.zeros((T, H, W), dtype=np.int32)
|
| 431 |
+
|
| 432 |
+
gripper_states = np.zeros((T, 1), dtype=np.float32)
|
| 433 |
+
joint_states = np.zeros((T, 0), dtype=np.float32)
|
| 434 |
+
ee_states = np.zeros((T, 6), dtype=np.float32) # [pos(3), ori(3)]
|
| 435 |
+
robot_states = np.zeros((T, 0), dtype=np.float32)
|
| 436 |
+
|
| 437 |
+
dones = np.zeros(T, dtype=np.uint8); dones[-1] = 1
|
| 438 |
+
rewards = np.zeros(T, dtype=np.uint8); rewards[-1] = 1
|
| 439 |
+
|
| 440 |
+
# --- create / overwrite episode group ---
|
| 441 |
+
if episode_key in root:
|
| 442 |
+
del root[episode_key] # clean if re-writing
|
| 443 |
+
ep_grp = root.create_group(episode_key)
|
| 444 |
+
obs_grp = ep_grp.create_group("obs")
|
| 445 |
+
|
| 446 |
+
# states
|
| 447 |
+
obs_grp.create_dataset("gripper_states", data=gripper_states)
|
| 448 |
+
obs_grp.create_dataset("joint_states", data=joint_states)
|
| 449 |
+
obs_grp.create_dataset("ee_states", data=ee_states)
|
| 450 |
+
obs_grp.create_dataset("ee_pos", data=ee_states[:, :3])
|
| 451 |
+
obs_grp.create_dataset("ee_ori", data=ee_states[:, 3:])
|
| 452 |
+
|
| 453 |
+
# visuals
|
| 454 |
+
obs_grp.create_dataset("agentview_rgb", data=agentview_rgb)
|
| 455 |
+
obs_grp.create_dataset("eye_in_hand_rgb", data=eye_in_hand_rgb)
|
| 456 |
+
obs_grp.create_dataset("agentview_depth", data=agentview_depth)
|
| 457 |
+
obs_grp.create_dataset("eye_in_hand_depth", data=eye_in_hand_depth)
|
| 458 |
+
obs_grp.create_dataset("agentview_seg", data=agentview_seg)
|
| 459 |
+
obs_grp.create_dataset("eye_in_hand_seg", data=eye_in_hand_seg)
|
| 460 |
+
|
| 461 |
+
# top-level (episode)
|
| 462 |
+
ep_grp.create_dataset("actions", data=actions)
|
| 463 |
+
ep_grp.create_dataset("robot_states", data=robot_states)
|
| 464 |
+
ep_grp.create_dataset("rewards", data=rewards)
|
| 465 |
+
ep_grp.create_dataset("dones", data=dones)
|
| 466 |
+
|
| 467 |
+
# --- update metainfo JSON for this episode ---
|
| 468 |
+
if task_name not in metainfo:
|
| 469 |
+
metainfo[task_name] = {}
|
| 470 |
+
if episode_key not in metainfo[task_name]:
|
| 471 |
+
metainfo[task_name][episode_key] = {}
|
| 472 |
+
|
| 473 |
+
metainfo[task_name][episode_key].update({
|
| 474 |
+
"success": True,
|
| 475 |
+
"initial_state": robot_states[0].tolist() if len(robot_states) else [],
|
| 476 |
+
"task_nouns": [], # fill if you want
|
| 477 |
+
"task_description": task_description,
|
| 478 |
+
"exo_boxes": agentview_boxes, # per-frame boxes you provided
|
| 479 |
+
"ego_boxes": [[] for _ in range(T)], # none available
|
| 480 |
+
})
|
| 481 |
+
|
| 482 |
+
# write/merge metainfo once at the end
|
| 483 |
+
with open(meta_path, "w") as f:
|
| 484 |
+
json.dump(metainfo, f, indent=2)
|
| 485 |
+
|
| 486 |
+
return {"hdf5": h5_path, "metainfo": meta_path}
|
| 487 |
+
|
| 488 |
+
def main():
|
| 489 |
+
p = argparse.ArgumentParser(description="Convert sequences to LIBERO-like demos.")
|
| 490 |
+
p.add_argument("--task_dir", type=str, help="Path to task folder (contains success/ and masks/).")
|
| 491 |
+
p.add_argument("--out_root", type=str, required=True, help="Target directory where <task_name>/<task_name>_<seq>.hdf5 is written.")
|
| 492 |
+
args = p.parse_args()
|
| 493 |
+
|
| 494 |
+
task_dir = Path(args.task_dir).expanduser().resolve()
|
| 495 |
+
task_name = task_dir.name
|
| 496 |
+
out_root = Path(args.out_root).expanduser().resolve()
|
| 497 |
+
out_root.mkdir(parents=True, exist_ok=True)
|
| 498 |
+
|
| 499 |
+
success_dir = task_dir / "success"
|
| 500 |
+
masks_dir = task_dir / "masks"
|
| 501 |
+
if not success_dir.is_dir() or not masks_dir.is_dir():
|
| 502 |
+
print("[ERROR] task_dir must contain 'success/' and 'masks/'")
|
| 503 |
+
sys.exit(1)
|
| 504 |
+
|
| 505 |
+
success_seqs = {d.name for d in success_dir.iterdir() if d.is_dir()}
|
| 506 |
+
mask_seqs = {d.name for d in masks_dir.iterdir() if d.is_dir()}
|
| 507 |
+
seqs = sorted(list(success_seqs & mask_seqs), key=natural_key)
|
| 508 |
+
|
| 509 |
+
results = []
|
| 510 |
+
from tqdm import tqdm
|
| 511 |
+
for i, name in tqdm(enumerate(seqs)):
|
| 512 |
+
info = process_sequence(name, task_dir, out_root, sequence_rename=f'demo_{i+1}')
|
| 513 |
+
|
| 514 |
+
write_episode(
|
| 515 |
+
out_dir=args.out_root,
|
| 516 |
+
task_name=info['task_description'],
|
| 517 |
+
episode=info,
|
| 518 |
+
)
|
| 519 |
+
|
| 520 |
+
# # Write a small manifest JSON
|
| 521 |
+
# manifest = {"task": task_name, "outputs": results}
|
| 522 |
+
# (out_root / f"{task_name}_manifest.json").write_text(json.dumps(manifest, indent=2))
|
| 523 |
+
# print(f"[DONE] Manifest saved to {out_root / (task_name + '_manifest.json')}")
|
| 524 |
+
|
| 525 |
+
if __name__ == "__main__":
|
| 526 |
+
main()
|
hdf5_data/hdf5_merger.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import argparse
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
import time
|
| 6 |
+
|
| 7 |
+
import cv2
|
| 8 |
+
import h5py
|
| 9 |
+
import numpy as np
|
| 10 |
+
import tqdm
|
| 11 |
+
|
| 12 |
+
def sort_key_hdf5(name):
|
| 13 |
+
# extract number after 'demo_'
|
| 14 |
+
number = int(name.split('_')[-1].split('.')[0])
|
| 15 |
+
return number
|
| 16 |
+
|
| 17 |
+
def sort_key_metainfo(name):
|
| 18 |
+
# extract number after 'demo_'
|
| 19 |
+
number = int(name.split('_')[-2].split('.')[0])
|
| 20 |
+
return number
|
| 21 |
+
|
| 22 |
+
def recursive_merge(dest, src):
|
| 23 |
+
for key, value in src.items():
|
| 24 |
+
if key in dest and isinstance(dest[key], dict) and isinstance(value, dict):
|
| 25 |
+
recursive_merge(dest[key], value)
|
| 26 |
+
else:
|
| 27 |
+
dest[key] = value
|
| 28 |
+
|
| 29 |
+
def recursive_copy(src, dest):
|
| 30 |
+
for key in src.keys():
|
| 31 |
+
if isinstance(src[key], h5py.Group):
|
| 32 |
+
new_grp = dest.create_group(key)
|
| 33 |
+
recursive_copy(src[key], new_grp)
|
| 34 |
+
elif isinstance(src[key], h5py.Dataset):
|
| 35 |
+
src.copy(key, dest)
|
| 36 |
+
for attr_key in src.attrs:
|
| 37 |
+
dest.attrs[attr_key] = src.attrs[attr_key]
|
| 38 |
+
|
| 39 |
+
def main(args):
|
| 40 |
+
|
| 41 |
+
# Prepare JSON file to record success/false and initial states per episode
|
| 42 |
+
metainfo_json_dict = {}
|
| 43 |
+
metainfo_json_out_path = os.path.join(args.out_dir, f"./metainfo.json")
|
| 44 |
+
with open(metainfo_json_out_path, "w") as f:
|
| 45 |
+
# Just test that we can write to this file (we overwrite it later)
|
| 46 |
+
json.dump(metainfo_json_dict, f)
|
| 47 |
+
|
| 48 |
+
# Get task suite
|
| 49 |
+
task_suite = ['task1', 'task2', 'task3']
|
| 50 |
+
num_tasks_in_suite = 3
|
| 51 |
+
|
| 52 |
+
# Iterate through the task suites
|
| 53 |
+
for task_id in tqdm.tqdm(range(num_tasks_in_suite)):
|
| 54 |
+
# Get task in suite
|
| 55 |
+
task = task_suite[task_id]
|
| 56 |
+
data_dir = os.path.join('./', task)
|
| 57 |
+
data_files = os.listdir(data_dir)
|
| 58 |
+
|
| 59 |
+
hdf5_files = [_file for _file in data_files if '.hdf5' in _file]
|
| 60 |
+
hdf5_files = sorted(hdf5_files, key=sort_key_hdf5)
|
| 61 |
+
meta_files = [_file for _file in data_files if '_metainfo.json' in _file]
|
| 62 |
+
meta_files = sorted(meta_files, key=sort_key_metainfo)
|
| 63 |
+
|
| 64 |
+
# Create new HDF5 file for regenerated demos
|
| 65 |
+
new_data_path = os.path.join(args.out_dir, f"{task}_demo.hdf5")
|
| 66 |
+
new_data_file = h5py.File(new_data_path, "w")
|
| 67 |
+
grp = new_data_file.create_group("data")
|
| 68 |
+
|
| 69 |
+
for idx, hdf5_name in tqdm.tqdm(enumerate(hdf5_files)):
|
| 70 |
+
hdf5_name = os.path.join(data_dir, hdf5_name)
|
| 71 |
+
traj_data_file = h5py.File(hdf5_name, "r")
|
| 72 |
+
traj_data = traj_data_file["data"]
|
| 73 |
+
|
| 74 |
+
# Copy trajectory data
|
| 75 |
+
for ep_key in traj_data.keys():
|
| 76 |
+
src_grp = traj_data[ep_key]
|
| 77 |
+
dest_grp = grp.create_group(ep_key)
|
| 78 |
+
recursive_copy(src_grp, dest_grp)
|
| 79 |
+
|
| 80 |
+
traj_data_file.close()
|
| 81 |
+
|
| 82 |
+
meta_name = os.path.join(data_dir, meta_files[idx])
|
| 83 |
+
with open(meta_name, "r") as f:
|
| 84 |
+
# Just test that we can write to this file (we overwrite it later)
|
| 85 |
+
meta_data = json.load(f)
|
| 86 |
+
meta_data_key = list(meta_data.keys())[0]
|
| 87 |
+
demo_data_key = list(meta_data[meta_data_key].keys())[0]
|
| 88 |
+
indexed_meta_data = meta_data[meta_data_key][demo_data_key]
|
| 89 |
+
|
| 90 |
+
# Recursively merge the meta data
|
| 91 |
+
recursive_merge(metainfo_json_dict, meta_data)
|
| 92 |
+
|
| 93 |
+
# Write metainfo dict to JSON file
|
| 94 |
+
# (We repeatedly overwrite, rather than doing this once at the end, just in case the script crashes midway)
|
| 95 |
+
with open(metainfo_json_out_path, "w") as f:
|
| 96 |
+
json.dump(metainfo_json_dict, f, indent=2)
|
| 97 |
+
|
| 98 |
+
# if idx > 1:
|
| 99 |
+
# break
|
| 100 |
+
|
| 101 |
+
new_data_file.close()
|
| 102 |
+
|
| 103 |
+
if __name__ == '__main__':
|
| 104 |
+
# Parse command-line arguments
|
| 105 |
+
parser = argparse.ArgumentParser()
|
| 106 |
+
parser.add_argument("--in_dir", default='./')
|
| 107 |
+
parser.add_argument("--out_dir", default='./')
|
| 108 |
+
args = parser.parse_args()
|
| 109 |
+
|
| 110 |
+
main(args)
|
hdf5_data/task1-annotations.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:70c664c2e5321593ce12185e2f5a826f3c926d3775fe519841ca3e52c60c9db8
|
| 3 |
+
size 224491
|
hdf5_data/task2-annotations.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:95f0f79d402b5e78b0cd64cc99a392cb052e04cf1a08852bde213b396f857766
|
| 3 |
+
size 281863
|
hdf5_data/task3-annotations.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d4d046df2c6722c1771c473aa735201635fb9ac2f1d6eb723672613bd707e3ff
|
| 3 |
+
size 411912
|