Datasets:
ArXiv:
License:
| import os | |
| import numpy as np | |
| from trackeval import _timing | |
| from scipy.optimize import linear_sum_assignment | |
| from trackeval.metrics._base_metric import _BaseMetric | |
| class HOTA(_BaseMetric): | |
| """ | |
| Class which implements the HOTA metrics. | |
| See: https://link.springer.com/article/10.1007/s11263-020-01375-2 | |
| :param Dict config: configuration for the app | |
| :: | |
| identity = trackeval.metrics.HOTA(config) | |
| """ | |
| def __init__(self, config=None): | |
| super().__init__() | |
| self.plottable = True | |
| self.array_labels = np.arange(0.05, 0.99, 0.05) | |
| self.integer_array_fields = ['HOTA_TP', 'HOTA_FN', 'HOTA_FP'] | |
| self.float_array_fields = ['HOTA', 'DetA', 'AssA', 'DetRe', 'DetPr', 'AssRe', 'AssPr', 'LocA', 'OWTA'] | |
| self.float_fields = ['HOTA(0)', 'LocA(0)', 'HOTALocA(0)'] | |
| self.fields = self.float_array_fields + self.integer_array_fields + self.float_fields | |
| self.summary_fields = self.float_array_fields + self.float_fields | |
| def eval_sequence(self, data): | |
| """ | |
| Calculates the HOTA metrics for one sequence | |
| :param Dict data: dictionary containing the data for the sequence | |
| :return: dictionary containing the calculated hota metrics | |
| :rtype: Dict | |
| """ | |
| # Initialise results | |
| res = {} | |
| for field in self.float_array_fields + self.integer_array_fields: | |
| res[field] = np.zeros((len(self.array_labels)), dtype=float) | |
| for field in self.float_fields: | |
| res[field] = 0 | |
| # Return result quickly if tracker or gt sequence is empty | |
| if data['num_tracker_dets'] == 0: | |
| res['HOTA_FN'] = data['num_gt_dets'] * np.ones((len(self.array_labels)), dtype=float) | |
| res['LocA'] = np.ones((len(self.array_labels)), dtype=float) | |
| res['LocA(0)'] = 1.0 | |
| return res | |
| if data['num_gt_dets'] == 0: | |
| res['HOTA_FP'] = data['num_tracker_dets'] * np.ones((len(self.array_labels)), dtype=float) | |
| res['LocA'] = np.ones((len(self.array_labels)), dtype=float) | |
| res['LocA(0)'] = 1.0 | |
| return res | |
| # Variables counting global association | |
| potential_matches_count = np.zeros((data['num_gt_ids'], data['num_tracker_ids'])) | |
| gt_id_count = np.zeros((data['num_gt_ids'], 1)) | |
| tracker_id_count = np.zeros((1, data['num_tracker_ids'])) | |
| # First loop through each timestep and accumulate global track information. | |
| for t, (gt_ids_t, tracker_ids_t) in enumerate(zip(data['gt_ids'], data['tracker_ids'])): | |
| # Count the potential matches between ids in each timestep | |
| # These are normalised, weighted by the match similarity. | |
| similarity = data['similarity_scores'][t] | |
| sim_iou_denom = similarity.sum(0)[np.newaxis, :] + similarity.sum(1)[:, np.newaxis] - similarity | |
| sim_iou = np.zeros_like(similarity) | |
| sim_iou_mask = sim_iou_denom > 0 + np.finfo('float').eps | |
| sim_iou[sim_iou_mask] = similarity[sim_iou_mask] / sim_iou_denom[sim_iou_mask] | |
| potential_matches_count[gt_ids_t[:, np.newaxis], tracker_ids_t[np.newaxis, :]] += sim_iou | |
| # Calculate the total number of dets for each gt_id and tracker_id. | |
| gt_id_count[gt_ids_t] += 1 | |
| tracker_id_count[0, tracker_ids_t] += 1 | |
| # Calculate overall jaccard alignment score (before unique matching) between IDs | |
| global_alignment_score = potential_matches_count / (gt_id_count + tracker_id_count - potential_matches_count) | |
| matches_counts = [np.zeros_like(potential_matches_count) for _ in self.array_labels] | |
| # Calculate scores for each timestep | |
| for t, (gt_ids_t, tracker_ids_t) in enumerate(zip(data['gt_ids'], data['tracker_ids'])): | |
| # Deal with the case that there are no gt_det/tracker_det in a timestep. | |
| if len(gt_ids_t) == 0: | |
| for a, alpha in enumerate(self.array_labels): | |
| res['HOTA_FP'][a] += len(tracker_ids_t) | |
| continue | |
| if len(tracker_ids_t) == 0: | |
| for a, alpha in enumerate(self.array_labels): | |
| res['HOTA_FN'][a] += len(gt_ids_t) | |
| continue | |
| # Get matching scores between pairs of dets for optimizing HOTA | |
| similarity = data['similarity_scores'][t] | |
| score_mat = global_alignment_score[gt_ids_t[:, np.newaxis], tracker_ids_t[np.newaxis, :]] * similarity | |
| # Hungarian algorithm to find best matches | |
| match_rows, match_cols = linear_sum_assignment(-score_mat) | |
| # Calculate and accumulate basic statistics | |
| for a, alpha in enumerate(self.array_labels): | |
| actually_matched_mask = similarity[match_rows, match_cols] >= alpha - np.finfo('float').eps | |
| alpha_match_rows = match_rows[actually_matched_mask] | |
| alpha_match_cols = match_cols[actually_matched_mask] | |
| num_matches = len(alpha_match_rows) | |
| res['HOTA_TP'][a] += num_matches | |
| res['HOTA_FN'][a] += len(gt_ids_t) - num_matches | |
| res['HOTA_FP'][a] += len(tracker_ids_t) - num_matches | |
| if num_matches > 0: | |
| res['LocA'][a] += sum(similarity[alpha_match_rows, alpha_match_cols]) | |
| matches_counts[a][gt_ids_t[alpha_match_rows], tracker_ids_t[alpha_match_cols]] += 1 | |
| # Calculate association scores (AssA, AssRe, AssPr) for the alpha value. | |
| # First calculate scores per gt_id/tracker_id combo and then average over the number of detections. | |
| for a, alpha in enumerate(self.array_labels): | |
| matches_count = matches_counts[a] | |
| ass_a = matches_count / np.maximum(1, gt_id_count + tracker_id_count - matches_count) | |
| res['AssA'][a] = np.sum(matches_count * ass_a) / np.maximum(1, res['HOTA_TP'][a]) | |
| ass_re = matches_count / np.maximum(1, gt_id_count) | |
| res['AssRe'][a] = np.sum(matches_count * ass_re) / np.maximum(1, res['HOTA_TP'][a]) | |
| ass_pr = matches_count / np.maximum(1, tracker_id_count) | |
| res['AssPr'][a] = np.sum(matches_count * ass_pr) / np.maximum(1, res['HOTA_TP'][a]) | |
| # Calculate final scores | |
| res['LocA'] = np.maximum(0, res['LocA']) / np.maximum(1e-10, res['HOTA_TP']) | |
| res = self._compute_final_fields(res) | |
| return res | |
| def combine_sequences(self, all_res): | |
| """ | |
| Combines metrics across all sequences | |
| :param Dict[str, float] all_res: dictionary containing the metrics for each sequence | |
| :return: dictionary containing the combined metrics across sequences | |
| :rtype: Dict[str, float] | |
| """ | |
| res = {} | |
| for field in self.integer_array_fields: | |
| res[field] = self._combine_sum(all_res, field) | |
| for field in ['AssRe', 'AssPr', 'AssA']: | |
| res[field] = self._combine_weighted_av(all_res, field, res, weight_field='HOTA_TP') | |
| loca_weighted_sum = sum([all_res[k]['LocA'] * all_res[k]['HOTA_TP'] for k in all_res.keys()]) | |
| res['LocA'] = np.maximum(1e-10, loca_weighted_sum) / np.maximum(1e-10, res['HOTA_TP']) | |
| res = self._compute_final_fields(res) | |
| return res | |
| def combine_classes_class_averaged(self, all_res, ignore_empty_classes=False): | |
| """ | |
| Combines metrics across all classes by averaging over the class values. | |
| If 'ignore_empty_classes' is True, then it only sums over classes with at least one gt or predicted detection. | |
| :param Dict[str, float] all_res: dictionary containing the ID metrics for each class | |
| :param bool ignore_empty_classes: Flag to ignore empty classes, defaults to False | |
| :return: dictionary containing the combined metrics averaged over classes | |
| :rtype: Dict[str, float] | |
| """ | |
| res = {} | |
| for field in self.integer_array_fields: | |
| if ignore_empty_classes: | |
| res[field] = self._combine_sum( | |
| {k: v for k, v in all_res.items() | |
| if (v['HOTA_TP'] + v['HOTA_FN'] + v['HOTA_FP'] > 0 + np.finfo('float').eps).any()}, field) | |
| else: | |
| res[field] = self._combine_sum({k: v for k, v in all_res.items()}, field) | |
| for field in self.float_fields + self.float_array_fields: | |
| if ignore_empty_classes: | |
| res[field] = np.mean([v[field] for v in all_res.values() if | |
| (v['HOTA_TP'] + v['HOTA_FN'] + v['HOTA_FP'] > 0 + np.finfo('float').eps).any()], | |
| axis=0) | |
| else: | |
| res[field] = np.mean([v[field] for v in all_res.values()], axis=0) | |
| return res | |
| def combine_classes_det_averaged(self, all_res): | |
| """ | |
| Combines metrics across all classes by averaging over the detection values | |
| :param Dict[str, float] all_res: dictionary containing the metrics for each class | |
| :return: dictionary containing the combined metrics averaged over detections | |
| :rtype: Dict[str, float] | |
| """ | |
| res = {} | |
| for field in self.integer_array_fields: | |
| res[field] = self._combine_sum(all_res, field) | |
| for field in ['AssRe', 'AssPr', 'AssA']: | |
| res[field] = self._combine_weighted_av(all_res, field, res, weight_field='HOTA_TP') | |
| loca_weighted_sum = sum([all_res[k]['LocA'] * all_res[k]['HOTA_TP'] for k in all_res.keys()]) | |
| res['LocA'] = np.maximum(1e-10, loca_weighted_sum) / np.maximum(1e-10, res['HOTA_TP']) | |
| res = self._compute_final_fields(res) | |
| return res | |
| def _compute_final_fields(res): | |
| """ | |
| Calculate sub-metric ('field') values which only depend on other sub-metric values. | |
| This function is used both for both per-sequence calculation, and in combining values across sequences. | |
| :param Dict[str, float] res: dictionary containing the sub-metric values | |
| :return: dictionary containing the updated sub-metric values | |
| :rtype: Dict[str, float] | |
| """ | |
| res['DetRe'] = res['HOTA_TP'] / np.maximum(1, res['HOTA_TP'] + res['HOTA_FN']) | |
| res['DetPr'] = res['HOTA_TP'] / np.maximum(1, res['HOTA_TP'] + res['HOTA_FP']) | |
| res['DetA'] = res['HOTA_TP'] / np.maximum(1, res['HOTA_TP'] + res['HOTA_FN'] + res['HOTA_FP']) | |
| res['HOTA'] = np.sqrt(res['DetA'] * res['AssA']) | |
| res['OWTA'] = np.sqrt(res['DetRe'] * res['AssA']) | |
| res['HOTA(0)'] = res['HOTA'][0] | |
| res['LocA(0)'] = res['LocA'][0] | |
| res['HOTALocA(0)'] = res['HOTA(0)']*res['LocA(0)'] | |
| return res | |
| def plot_single_tracker_results(self, table_res, tracker, cls, output_folder): | |
| """ | |
| Create plot of results | |
| :param Dict table_res: dictionary containing the evaluation results | |
| :param str tracker: The name of the tracker | |
| :param str cls: The class name | |
| :param str output_folder: The output folder path for saving the plot | |
| """ | |
| # Only loaded when run to reduce minimum requirements | |
| from matplotlib import pyplot as plt | |
| res = table_res['COMBINED_SEQ'] | |
| styles_to_plot = ['r', 'b', 'g', 'b--', 'b:', 'g--', 'g:', 'm'] | |
| for name, style in zip(self.float_array_fields, styles_to_plot): | |
| plt.plot(self.array_labels, res[name], style) | |
| plt.xlabel('alpha') | |
| plt.ylabel('score') | |
| plt.title(tracker + ' - ' + cls) | |
| plt.axis([0, 1, 0, 1]) | |
| legend = [] | |
| for name in self.float_array_fields: | |
| legend += [name + ' (' + str(np.round(np.mean(res[name]), 2)) + ')'] | |
| plt.legend(legend, loc='lower left') | |
| out_file = os.path.join(output_folder, cls + '_plot.pdf') | |
| os.makedirs(os.path.dirname(out_file), exist_ok=True) | |
| plt.savefig(out_file) | |
| plt.savefig(out_file.replace('.pdf', '.png')) | |
| plt.clf() |