Datasets:
ArXiv:
License:
| import os | |
| import re | |
| import argparse | |
| import shutil | |
| import json | |
| import csv | |
| import numpy as np | |
| import pandas as pd | |
| from typing import List, Set, Any | |
| class ValidateFile(argparse.Action): | |
| """ | |
| Module to validate files | |
| """ | |
| def __call__(self, parser, namespace, values, option_string = None): | |
| if not os.path.exists(values): | |
| parser.error(f"Please enter a valid file path. Got: {values}") | |
| elif not os.access(values, os.R_OK): | |
| parser.error(f"File {values} doesn't have read access") | |
| setattr(namespace, self.dest, values) | |
| def validate_file_path(input_string: str) -> str: | |
| """ | |
| Validates whether the input string matches a file path pattern | |
| :param str input_string: input string | |
| :return: validated file path | |
| :rtype: str | |
| :: | |
| file_path = validate_file_path(input_string) | |
| """ | |
| file_path_pattern = r"^[a-zA-Z0-9_\-\/.#]+$" | |
| if re.match(file_path_pattern, input_string): | |
| return input_string | |
| else: | |
| raise ValueError(f"Invalid file path: {input_string}") | |
| def load_csv_to_dataframe_from_file(file_path: str, column_names: List[str], camera_ids: Set, interval: int = 1) -> pd.DataFrame: | |
| """ | |
| Loads dataframe from a CSV file | |
| :param str file_path: file path | |
| :param List[str] column_names: column names | |
| :return: dataframe in the file | |
| :rtype: pd.DataFrame | |
| :: | |
| dataFrame = load_csv_to_dataframe_from_file(file_path, column_names) | |
| """ | |
| data: List[List[str]] = list() | |
| valid_file_path = validate_file_path(file_path) | |
| df = pd.read_csv(valid_file_path, sep=" ", header=None, names=column_names, dtype={"CameraId": int, "Id": int, "FrameId": int}) | |
| # Ensure non-negative values for CameraId, Id, FrameId | |
| if (df[['CameraId', 'Id', 'FrameId']] < 0).any().any(): | |
| raise ValueError("Invalid negative values found for CameraId, Id, or FrameId.") | |
| # Filter by camera_id | |
| df = df[df['CameraId'].isin(camera_ids)] | |
| # Filter rows where FrameId % interval == 0 | |
| df = df[df['FrameId'] % interval == 0] | |
| # Round the last two columns (assuming these are 'Xworld' and 'Yworld') | |
| df['Xworld'] = df['Xworld'].round(3) | |
| df['Yworld'] = df['Yworld'].round(3) | |
| if len(df) == 0: | |
| raise ValueError("DataFrame is empty after filtering process.") | |
| return df | |
| def write_dataframe_to_csv_to_file(file_path: str, data: pd.DataFrame, delimiter: str = " ") -> None: | |
| """ | |
| Writes dataframe to a CSV file | |
| :param str file_path: file path | |
| :param pd.DataFrame data: dataframe to be written | |
| :param str delimiter: delimiter of the CSV file | |
| :return: None | |
| :: | |
| write_dataframe_to_csv_to_file(file_path, data, delimiter) | |
| """ | |
| data.to_csv(file_path, sep=delimiter, index=False, header=False) | |
| def make_dir(dir_path: str) -> None: | |
| """ | |
| Makes a directory without removing other files | |
| :param str dir_path: directory path | |
| :return: None | |
| :: | |
| make_dir(dir_path) | |
| """ | |
| valid_dir_path = validate_file_path(dir_path) | |
| if not os.path.isdir(valid_dir_path): | |
| os.makedirs(validate_file_path(dir_path)) | |
| def make_seq_maps_file(file_dir: str, scenes: List[str], benchmark: str, split_to_eval: str) -> None: | |
| """ | |
| Makes a sequence-maps file used by TrackEval library | |
| :param str file_dir: file path | |
| :param Set(str) sensor_ids: names of sensors | |
| :param str benchmark: name of the benchmark | |
| :param str split_to_eval: name of the split of data | |
| :return: None | |
| :: | |
| make_seq_maps_file(file_dir, sensor_ids) | |
| """ | |
| make_clean_dir(file_dir) | |
| file_name = benchmark + "-" +split_to_eval + ".txt" | |
| seq_maps_file = file_dir + "/" + file_name | |
| f = open(seq_maps_file, "w") | |
| f.write("name\n") | |
| for name in scenes: | |
| sensor_name = str(name) + "\n" | |
| f.write(sensor_name) | |
| # f.write("FINAL") | |
| f.close() | |
| def make_seq_ini_file(gt_dir: str, scene: str, seq_length: int) -> None: | |
| """ | |
| Makes a sequence-ini file used by TrackEval library | |
| :param str gt_dir: file path | |
| :param str scene: Name of a single scene | |
| :param int seq_length: Number of frames | |
| :return: None | |
| :: | |
| make_seq_ini_file(gt_dir, scene, seq_length) | |
| """ | |
| ini_file_name = gt_dir + "/seqinfo.ini" | |
| f = open(ini_file_name, "w") | |
| f.write("[Sequence]\n") | |
| name= "name=" +str(scene)+ "\n" | |
| f.write(name) | |
| f.write("imDir=img1\n") | |
| f.write("frameRate=30\n") | |
| seq = "seqLength=" + str(seq_length) + "\n" | |
| f.write(seq) | |
| f.write("imWidth=1920\n") | |
| f.write("imHeight=1080\n") | |
| f.write("imExt=.jpg\n") | |
| f.close() | |
| def get_scene_to_camera_id_dict(file_path): | |
| """ | |
| Loads a mapping of scene names to camera IDs from a JSON file. | |
| :param str file_path: Path to the JSON file containing scenes data. | |
| :return: A dictionary where keys are scene names and values are lists of camera IDs. | |
| :: | |
| scene_to_camera_id_dict = get_scene_to_camera_id_dict(file_path) | |
| """ | |
| scene_2_cam_id = dict() | |
| valid_file_path = validate_file_path(file_path) | |
| with open(valid_file_path, "r") as file: | |
| scenes_data = json.load(file) | |
| for scene_data in scenes_data: | |
| scene_name = scene_data["scene_name"] | |
| camera_ids = scene_data["camera_ids"] | |
| if scene_name not in scene_2_cam_id: | |
| scene_2_cam_id[scene_name] = [] | |
| scene_2_cam_id[scene_name].extend(camera_ids) | |
| return scene_2_cam_id | |
| def check_file_size(file_path): | |
| """ | |
| Checks the size of a file and raises an exception if it exceeds 2 GB. | |
| :param str file_path: Path to the file to be checked. | |
| :return: None | |
| :raises ValueError: If the file size is greater than 2 GB. | |
| :: | |
| check_file_size(file_path) | |
| """ | |
| file_size_bytes = os.path.getsize(file_path) | |
| file_size_gb = file_size_bytes / (2**30) | |
| if file_size_gb > 2: | |
| raise ValueError(f"The size of the file is {file_size_gb:.2f} GB, which is greater than the 2 GB") | |
| def make_clean_dir(dir_path: str) -> None: | |
| """ | |
| Makes a clean directory | |
| :param str dir_path: directory path | |
| :return: None | |
| :: | |
| make_clean_dir(dir_path) | |
| """ | |
| valid_dir_path = validate_file_path(dir_path) | |
| if os.path.exists(valid_dir_path): | |
| shutil.rmtree(dir_path, ignore_errors=True) | |
| if not os.path.isdir(valid_dir_path): | |
| os.makedirs(validate_file_path(dir_path)) | |