Create coco.py
Browse files
coco.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""COCO"""
|
| 16 |
+
import json
|
| 17 |
+
import os
|
| 18 |
+
from pathlib import Path
|
| 19 |
+
|
| 20 |
+
import datasets
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
_CITATION = """
|
| 24 |
+
@article{DBLP:journals/corr/LinMBHPRDZ14,
|
| 25 |
+
author = {Tsung{-}Yi Lin and
|
| 26 |
+
Michael Maire and
|
| 27 |
+
Serge J. Belongie and
|
| 28 |
+
Lubomir D. Bourdev and
|
| 29 |
+
Ross B. Girshick and
|
| 30 |
+
James Hays and
|
| 31 |
+
Pietro Perona and
|
| 32 |
+
Deva Ramanan and
|
| 33 |
+
Piotr Doll{\'{a}}r and
|
| 34 |
+
C. Lawrence Zitnick},
|
| 35 |
+
title = {Microsoft {COCO:} Common Objects in Context},
|
| 36 |
+
journal = {CoRR},
|
| 37 |
+
volume = {abs/1405.0312},
|
| 38 |
+
year = {2014},
|
| 39 |
+
url = {http://arxiv.org/abs/1405.0312},
|
| 40 |
+
eprinttype = {arXiv},
|
| 41 |
+
eprint = {1405.0312},
|
| 42 |
+
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
|
| 43 |
+
biburl = {https://dblp.org/rec/journals/corr/LinMBHPRDZ14.bib},
|
| 44 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 45 |
+
}
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
_DESCRIPTION = """
|
| 49 |
+
MS COCO is a large-scale object detection, segmentation, and captioning dataset.
|
| 50 |
+
COCO has several features: Object segmentation, Recognition in context, Superpixel stuff segmentation, 330K images (>200K labeled), 1.5 million object instances, 80 object categories, 91 stuff categories, 5 captions per image, 250,000 people with keypoints.
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
_HOMEPAGE = "https://cocodataset.org/#home"
|
| 54 |
+
|
| 55 |
+
_LICENSE = "CC BY 4.0"
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
_IMAGES_URLS = {
|
| 59 |
+
"train": "https://huggingface.co/datasets/nyanko7/coco-hosted/resolve/main/train2014.zip",
|
| 60 |
+
"validation": "hhttps://huggingface.co/datasets/nyanko7/coco-hosted/resolve/main/val2014.zip",
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
_KARPATHY_FILES_URL = "https://huggingface.co/datasets/nyanko7/coco-hosted/resolve/main/caption_datasets.zip"
|
| 64 |
+
|
| 65 |
+
_SPLIT_MAP = {"train": "train2014", "validation": "val2014"}
|
| 66 |
+
|
| 67 |
+
_FEATURES = datasets.Features(
|
| 68 |
+
{
|
| 69 |
+
"image": datasets.Image(),
|
| 70 |
+
"filepath": datasets.Value("string"),
|
| 71 |
+
"sentids": [datasets.Value("int32")],
|
| 72 |
+
"filename": datasets.Value("string"),
|
| 73 |
+
"imgid": datasets.Value("int32"),
|
| 74 |
+
"split": datasets.Value("string"),
|
| 75 |
+
"sentences": {
|
| 76 |
+
"tokens": [datasets.Value("string")],
|
| 77 |
+
"raw": datasets.Value("string"),
|
| 78 |
+
"imgid": datasets.Value("int32"),
|
| 79 |
+
"sentid": datasets.Value("int32"),
|
| 80 |
+
},
|
| 81 |
+
"cocoid": datasets.Value("int32"),
|
| 82 |
+
}
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
_FEATURES_CAPTIONS = datasets.Features(
|
| 86 |
+
{
|
| 87 |
+
"image": datasets.Image(),
|
| 88 |
+
"filepath": datasets.Value("string"),
|
| 89 |
+
"sentids": [datasets.Value("int32")],
|
| 90 |
+
"filename": datasets.Value("string"),
|
| 91 |
+
"imgid": datasets.Value("int32"),
|
| 92 |
+
"split": datasets.Value("string"),
|
| 93 |
+
"sentences_tokens": [[datasets.Value("string")]],
|
| 94 |
+
"sentences_raw": [datasets.Value("string")],
|
| 95 |
+
"sentences_sentid": [datasets.Value("int32")],
|
| 96 |
+
"cocoid": datasets.Value("int32"),
|
| 97 |
+
}
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class COCO(datasets.GeneratorBasedBuilder):
|
| 102 |
+
"""COCO"""
|
| 103 |
+
|
| 104 |
+
VERSION = datasets.Version("1.0.0")
|
| 105 |
+
|
| 106 |
+
BUILDER_CONFIGS = [
|
| 107 |
+
datasets.BuilderConfig(
|
| 108 |
+
name="2014", version=VERSION, description="2014 version of COCO with Karpathy annotations and splits"
|
| 109 |
+
),
|
| 110 |
+
datasets.BuilderConfig(
|
| 111 |
+
name="2014_captions",
|
| 112 |
+
version=VERSION,
|
| 113 |
+
description="Same as 2014 but with all captions of one image gathered in a single example",
|
| 114 |
+
),
|
| 115 |
+
]
|
| 116 |
+
|
| 117 |
+
DEFAULT_CONFIG_NAME = "2014"
|
| 118 |
+
|
| 119 |
+
def _info(self):
|
| 120 |
+
return datasets.DatasetInfo(
|
| 121 |
+
description=_DESCRIPTION,
|
| 122 |
+
features=_FEATURES if self.config.name == "2014" else _FEATURES_CAPTIONS,
|
| 123 |
+
homepage=_HOMEPAGE,
|
| 124 |
+
license=_LICENSE,
|
| 125 |
+
citation=_CITATION,
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
def _split_generators(self, dl_manager):
|
| 129 |
+
annotation_file = os.path.join(dl_manager.download_and_extract(_KARPATHY_FILES_URL), "dataset_coco.json")
|
| 130 |
+
image_folders = {k: Path(v) for k, v in dl_manager.download_and_extract(_IMAGES_URLS).items()}
|
| 131 |
+
|
| 132 |
+
return [
|
| 133 |
+
datasets.SplitGenerator(
|
| 134 |
+
name=datasets.Split.TRAIN,
|
| 135 |
+
gen_kwargs={
|
| 136 |
+
"annotation_file": annotation_file,
|
| 137 |
+
"image_folders": image_folders,
|
| 138 |
+
"split_key": "train",
|
| 139 |
+
},
|
| 140 |
+
),
|
| 141 |
+
datasets.SplitGenerator(
|
| 142 |
+
name=datasets.Split.VALIDATION,
|
| 143 |
+
gen_kwargs={
|
| 144 |
+
"annotation_file": annotation_file,
|
| 145 |
+
"image_folders": image_folders,
|
| 146 |
+
"split_key": "validation",
|
| 147 |
+
},
|
| 148 |
+
),
|
| 149 |
+
datasets.SplitGenerator(
|
| 150 |
+
name=datasets.Split.TEST,
|
| 151 |
+
gen_kwargs={
|
| 152 |
+
"annotation_file": annotation_file,
|
| 153 |
+
"image_folders": image_folders,
|
| 154 |
+
"split_key": "test",
|
| 155 |
+
},
|
| 156 |
+
),
|
| 157 |
+
]
|
| 158 |
+
|
| 159 |
+
def _generate_examples(self, annotation_file, image_folders, split_key):
|
| 160 |
+
if self.config.name == "2014_captions":
|
| 161 |
+
return self._generate_examples_2014_captions(annotation_file, image_folders, split_key)
|
| 162 |
+
elif self.config.name == "2014":
|
| 163 |
+
return self._generate_examples_2014(annotation_file, image_folders, split_key)
|
| 164 |
+
|
| 165 |
+
def _generate_examples_2014_captions(self, annotation_file, image_folders, split_key):
|
| 166 |
+
with open(annotation_file, "r", encoding="utf-8") as fi:
|
| 167 |
+
annotations = json.load(fi)
|
| 168 |
+
|
| 169 |
+
for image_metadata in annotations["images"]:
|
| 170 |
+
if split_key == "train":
|
| 171 |
+
if image_metadata["split"] != "train" and image_metadata["split"] != "restval":
|
| 172 |
+
continue
|
| 173 |
+
elif split_key == "validation":
|
| 174 |
+
if image_metadata["split"] != "val":
|
| 175 |
+
continue
|
| 176 |
+
elif split_key == "test":
|
| 177 |
+
if image_metadata["split"] != "test":
|
| 178 |
+
continue
|
| 179 |
+
|
| 180 |
+
if "val2014" in image_metadata["filename"]:
|
| 181 |
+
image_path = image_folders["validation"] / _SPLIT_MAP["validation"]
|
| 182 |
+
else:
|
| 183 |
+
image_path = image_folders["train"] / _SPLIT_MAP["train"]
|
| 184 |
+
|
| 185 |
+
image_path = image_path / image_metadata["filename"]
|
| 186 |
+
|
| 187 |
+
record = {
|
| 188 |
+
"image": str(image_path.absolute()),
|
| 189 |
+
"filepath": image_metadata["filename"],
|
| 190 |
+
"sentids": image_metadata["sentids"],
|
| 191 |
+
"filename": image_metadata["filename"],
|
| 192 |
+
"imgid": image_metadata["imgid"],
|
| 193 |
+
"split": image_metadata["split"],
|
| 194 |
+
"cocoid": image_metadata["cocoid"],
|
| 195 |
+
"sentences_tokens": [caption["tokens"] for caption in image_metadata["sentences"]],
|
| 196 |
+
"sentences_raw": [caption["raw"] for caption in image_metadata["sentences"]],
|
| 197 |
+
"sentences_sentid": [caption["sentid"] for caption in image_metadata["sentences"]],
|
| 198 |
+
}
|
| 199 |
+
|
| 200 |
+
yield record["imgid"], record
|
| 201 |
+
|
| 202 |
+
def _generate_examples_2014(self, annotation_file, image_folders, split_key):
|
| 203 |
+
counter = 0
|
| 204 |
+
with open(annotation_file, "r", encoding="utf-8") as fi:
|
| 205 |
+
annotations = json.load(fi)
|
| 206 |
+
|
| 207 |
+
for image_metadata in annotations["images"]:
|
| 208 |
+
if split_key == "train":
|
| 209 |
+
if image_metadata["split"] != "train" and image_metadata["split"] != "restval":
|
| 210 |
+
continue
|
| 211 |
+
elif split_key == "validation":
|
| 212 |
+
if image_metadata["split"] != "val":
|
| 213 |
+
continue
|
| 214 |
+
elif split_key == "test":
|
| 215 |
+
if image_metadata["split"] != "test":
|
| 216 |
+
continue
|
| 217 |
+
|
| 218 |
+
if "val2014" in image_metadata["filename"]:
|
| 219 |
+
image_path = image_folders["validation"] / _SPLIT_MAP["validation"]
|
| 220 |
+
else:
|
| 221 |
+
image_path = image_folders["train"] / _SPLIT_MAP["train"]
|
| 222 |
+
|
| 223 |
+
image_path = image_path / image_metadata["filename"]
|
| 224 |
+
|
| 225 |
+
for caption in image_metadata["sentences"]:
|
| 226 |
+
yield counter, {
|
| 227 |
+
"image": str(image_path.absolute()),
|
| 228 |
+
"filepath": image_metadata["filename"],
|
| 229 |
+
"sentids": image_metadata["sentids"],
|
| 230 |
+
"filename": image_metadata["filename"],
|
| 231 |
+
"imgid": image_metadata["imgid"],
|
| 232 |
+
"split": image_metadata["split"],
|
| 233 |
+
"sentences": {
|
| 234 |
+
"tokens": caption["tokens"],
|
| 235 |
+
"raw": caption["raw"],
|
| 236 |
+
"imgid": caption["imgid"],
|
| 237 |
+
"sentid": caption["sentid"],
|
| 238 |
+
},
|
| 239 |
+
"cocoid": image_metadata["cocoid"],
|
| 240 |
+
}
|
| 241 |
+
counter += 1
|