ylshen commited on
Commit
749e88f
·
verified ·
1 Parent(s): 7bf27c0

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # FactNet Benchmarks
2
+
3
+ This repository contains three benchmark datasets derived from FactNet:
4
+
5
+ ### 1. Knowledge Graph Completion (KGC)
6
+
7
+ The KGC benchmark evaluates a model's ability to complete missing links in a knowledge graph.
8
+
9
+ - **Format**: (subject, relation, object) triples
10
+ - **Splits**: Train/Dev/Test
11
+ - **Task**: Predict missing entity (either subject or object)
12
+ - **Construction**: Extracted from entity-valued synsets and projected to (S, P, O) triples with careful cross-split collision handling
13
+
14
+ ### 2. Multilingual Knowledge Graph QA (MKQA)
15
+
16
+ The MKQA benchmark evaluates knowledge graph question answering across multiple languages.
17
+
18
+ - **Languages**: Multiple (en, zh, de, fr, etc.)
19
+ - **Format**: Natural language questions with structured answers
20
+ - **Task**: Answer factoid questions using knowledge graph information
21
+ - **Construction**: Generated from FactSynsets with canonical mentions across languages
22
+
23
+ ### 3. Multilingual Fact Checking (MFC)
24
+
25
+ The MFC benchmark evaluates fact verification capabilities across languages.
26
+
27
+ - **Languages**: Multiple (en, zh, de, fr, etc.)
28
+ - **Labels**: SUPPORTED, REFUTED, NOT_ENOUGH_INFO
29
+ - **Format**: Claims with associated evidence units
30
+ - **Construction**:
31
+ - SUPPORTED claims generated from synsets with FactSenses
32
+ - REFUTED claims generated by value replacement
33
+ - NOT_ENOUGH_INFO claims generated with no matching synsets
34
+ - Each claim associated with gold evidence units with character spans
35
+
36
+ ## Usage
37
+
38
+ ```python
39
+ from datasets import load_dataset
40
+
41
+ # Load the KGC benchmark
42
+ kgc_dataset = load_dataset("factnet/kgc_bench")
43
+
44
+ # Load the MKQA benchmark for English
45
+ mkqa_en_dataset = load_dataset("factnet/mkqa_bench", "en")
46
+
47
+ # Load the MFC benchmark for English
48
+ mfc_en_dataset = load_dataset("factnet/mfc_bench", "en")
49
+
50
+ # Example of working with the MFC dataset
51
+ for item in mfc_en_dataset["test"]:
52
+ claim = item["claim"]
53
+ label = item["label"]
54
+ evidence = item["evidence"]
55
+ print(f"Claim: {claim}")
56
+ print(f"Label: {label}")
57
+ print(f"Evidence: {evidence}")
58
+ ```
59
+
60
+ ## Construction Process
61
+
62
+ FactNet and its benchmarks were constructed through a multi-phase pipeline:
63
+
64
+ 1. **Data Extraction**:
65
+ - Parsing Wikidata to extract FactStatements and labels
66
+ - Extracting Wikipedia pages using WikiExtractor
67
+ - Parsing pagelinks and redirects from SQL dumps
68
+
69
+ 2. **Elasticsearch Indexing**:
70
+ - Indexing Wikipedia pages, FactStatements, and entity labels
71
+ - Creating optimized indices for retrieval
72
+
73
+ 3. **FactNet Construction**:
74
+ - Building FactSense instances by linking statements to text
75
+ - Aggregating FactStatements into FactSynsets
76
+ - Building inter-synset relation edges
77
+
78
+ 4. **Benchmark Generation**:
79
+ - Constructing KGC, MKQA, and MFC benchmarks from the FactNet structure
80
+
81
+ ## Citation
82
+
83
+ If you use FactNet benchmarks in your research, please cite:
84
+
85
+ ```
86
+ @article{shen2026factnet,
87
+ title={FactNet: A Billion-Scale Knowledge Graph for Multilingual Factual Grounding},
88
+ author={Shen, Yingli and Lai, Wen and Zhou, Jie and Zhang, Xueren and Wang, Yudong and Luo, Kangyang and Wang, Shuo and Gao, Ge and Fraser, Alexander and Sun, Maosong},
89
+ journal={arXiv preprint arXiv:2602.03417},
90
+ year={2026}
91
+ }
92
+ ```
93
+
94
+ ## Acknowledgements
95
+
96
+ FactNet was built using Wikidata and Wikipedia data. We thank the communities behind these resources for their invaluable contributions to open knowledge.