oreva commited on
Commit
59bbecc
·
1 Parent(s): c020a8d

First version of BLAB

Browse files
Files changed (2) hide show
  1. README.md +251 -0
  2. blab_long_audio.py +352 -0
README.md CHANGED
@@ -1,3 +1,254 @@
1
  ---
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-4.0
3
+ mutilinguality:
4
+ - monolingual
5
+ task_categories:
6
+ - audio-text-to-text
7
+ size_categories:
8
+ - 1K<n<10K
9
+ source_datasets:
10
+ - original
11
+ pretty_name: BLAB (Brutally Long Audio Bench)
12
+ tags:
13
+ - speech
14
+ - audio
15
+ - speech-llm
16
+ - audio-lm
17
+ - long-audio
18
+ - spoken-language-understanding
19
+ viewer: true
20
+ configs:
21
+ - config_name: word_localization
22
+ features:
23
+ - name: video_url
24
+ dtype: string
25
+ - name: audio
26
+ dtype: string
27
+ - name: question
28
+ dtype: string
29
+ - name: answer_type
30
+ dtype: string
31
+ - name: groundtruth
32
+ dtype: LargeList
33
+ inner_dtype:
34
+ - name: word
35
+ dtype: string
36
+ - name: start
37
+ dtype: float32
38
+ - name: end
39
+ dtype: float32
40
+ - config_name: advertisement_localization
41
+ features:
42
+ - name: video_url
43
+ dtype: string
44
+ - name: audio
45
+ dtype: string
46
+ - name: question
47
+ dtype: string
48
+ - name: answer_type
49
+ dtype: string
50
+ - name: groundtruth
51
+ dtype: Struct
52
+ fields:
53
+ - name: ads_segment
54
+ dtype: LargeList
55
+ inner_dtype:
56
+ - name: text
57
+ dtype: string
58
+ - name: start
59
+ dtype: float32
60
+ - name: end
61
+ dtype: float32
62
+ - name: word_timestamp
63
+ dtype: LargeList
64
+ inner_dtype:
65
+ - name: word
66
+ dtype: string
67
+ - name: start
68
+ dtype: float32
69
+ - name: end
70
+ dtype: float32
71
+
72
+ - config_name: named_entity_localization
73
+ features:
74
+ - name: video_url
75
+ dtype: string
76
+ - name: audio
77
+ dtype: string
78
+ - name: question
79
+ dtype: string
80
+ - name: answer_type
81
+ dtype: string
82
+ - name: groundtruth
83
+ dtype: Struct
84
+ fields:
85
+ - name: entities
86
+ dtype: LargeList
87
+ inner_dtype:
88
+ - name: entity_type
89
+ dtype: string
90
+ - name: entity
91
+ dtype: string
92
+ - name: start
93
+ dtype: float32
94
+ - name: end
95
+ dtype: float32
96
+ - name: word_timestamp
97
+ dtype: LargeList
98
+ inner_dtype:
99
+ - name: word
100
+ dtype: string
101
+ - name: start
102
+ dtype: float32
103
+ - name: end
104
+ dtype: float32
105
+ - config_name: speaker_number_estimation
106
+ features:
107
+ - name: video_url
108
+ dtype: string
109
+ - name: audio
110
+ dtype: string
111
+ - name: question
112
+ dtype: string
113
+ - name: groundtruth
114
+ dtype: Sequence # It's a list, even if it might contain one element
115
+ inner_dtype:
116
+ dtype: int32 # The type of elements within the list
117
+ - config_name: entire_duration
118
+ features:
119
+ - name: video_url
120
+ dtype: string
121
+ - name: audio
122
+ dtype: string
123
+ - name: question
124
+ dtype: string
125
+ - name: groundtruth
126
+ dtype: float32
127
+ - config_name: event_duration
128
+ features:
129
+ - name: video_url
130
+ dtype: string
131
+ - name: audio
132
+ dtype: string
133
+ - name: question
134
+ dtype: string
135
+ - name: answer_type
136
+ dtype: string
137
+ - name: groundtruth
138
+ dtype: float32
139
+ - config_name: emotion_ranking
140
+ features:
141
+ - name: video_url
142
+ dtype: string
143
+ - name: audio
144
+ dtype: string
145
+ - name: type
146
+ dtype: string
147
+ - name: question
148
+ dtype: string
149
+ - name: correct_option
150
+ dtype: string
151
+ - name: option_A
152
+ dtype: string
153
+ - name: option_B
154
+ dtype: string
155
+ - name: option_C
156
+ dtype: string
157
+ - name: option_D
158
+ dtype: string
159
+ - name: option_E
160
+ dtype: string
161
+ - name: correct_answer
162
+ dtype: string
163
+ - config_name: emotion_reasoning
164
+ features:
165
+ - name: video_url
166
+ dtype: string
167
+ - name: audio
168
+ dtype: string
169
+ - name: type
170
+ dtype: string
171
+ - name: question
172
+ dtype: string
173
+ - name: correct_option
174
+ dtype: string
175
+ - name: option_A
176
+ dtype: string
177
+ - name: option_B
178
+ dtype: string
179
+ - name: option_C
180
+ dtype: string
181
+ - name: option_D
182
+ dtype: string
183
+ - name: correct_answer
184
+ dtype: string
185
  ---
186
+
187
+
188
+ # BLAB: Brutally Long Audio Bench
189
+
190
+
191
+ ## Dataset Summary
192
+ Brutally Long Audio Bench (BLAB) is a challenging long-form audio benchmark that evaluates audio LMs on localization, duration estimation, emotion, and counting tasks using audio segments averaging 51 minutes in length. BLAB consists of 833+ hours of diverse, full-length Youtube audio clips, each paired with human-annotated, text-based natural language questions and answers. Our audio data were collected from permissively licensed sources and underwent a human-assisted filtering process to ensure task compliance.
193
+
194
+ NB: This data should only be used for evaluation purposes and not for model training.
195
+
196
+
197
+
198
+ ## Tasks Covered in BLAB
199
+
200
+ ### Localization
201
+ * **Word Localization:** Locate the exact start and end times of specific words within the audio.
202
+ * **Named Entity Localization:** Detect and locate the exact start and end times of named entities (e.g., people, organizations, locations).
203
+ * **Advertisement Localization:** Locate and transcribe advertisement segments within a podcast.
204
+
205
+ ### Counting
206
+ * **Speaker Number Estimation:** Determine the number of unique speakers present in the full audio segment.
207
+
208
+ ### Duration
209
+ * **Event Duration:** Calculate the duration of specific acoustic events (e.g., laughter in a comedy special, question-and-answer segments in a panel session, or a particular speaker’s total speaking time in a meeting) within an audio sample,.
210
+ * **Entire Duration:** Estimate the total duration of an audio file, expressed in seconds.
211
+
212
+ ### Emotion
213
+ * **Emotion Reasoning:** Reason over emotional expressions conveyed in the audio.
214
+ * **Emotion Ranking:** Rank different emotional expressions of speech and non-verbal sound present in the audio.
215
+
216
+
217
+
218
+ ## Dataset Structure
219
+
220
+ To load a specific task from BLAB, you'll need to specify its configuration name. Keep in mind that **BLAB provides URLs to the YouTube audio files, not the actual audio files themselves.** You'll need to download the audio from these URLs separately.
221
+
222
+ ```python
223
+ from datasets import load_dataset
224
+
225
+ # Load the Word Localization task
226
+ word_localization_data = load_dataset("oreva/blab_long_audio", "word_localization")
227
+
228
+
229
+ # Load the Named Entity Localization task
230
+ named_entity_localization_data = load_dataset("oreva/blab_long_audio", "named_entity_localization")
231
+
232
+ # You can load any other task similarly:
233
+ # speaker_number_estimation_data = load_dataset("oreva/blab_long_audio", "speaker_number_estimation")
234
+ # entire_duration_data = load_dataset("oreva/blab_long_audio", "entire_duration")
235
+ # event_duration_data = load_dataset("oreva/blab_long_audio", "event_duration")
236
+ # emotion_reasoning_data = load_dataset("oreva/blab_long_audio", "emotion_reasoning")
237
+ # emotion_ranking_data = load_dataset("oreva/blab_long_audio", "emotion_ranking")
238
+
239
+ ```
240
+
241
+ # Citation
242
+
243
+ ```
244
+ @misc{ahia2025blabbrutallylongaudio,
245
+ title={BLAB: Brutally Long Audio Bench},
246
+ author={Orevaoghene Ahia and Martijn Bartelds and Kabir Ahuja and Hila Gonen and Valentin Hofmann and Siddhant Arora and Shuyue Stella Li and Vishal Puttagunta and Mofetoluwa Adeyemi and Charishma Buchireddy and Ben Walls and Noah Bennett and Shinji Watanabe and Noah A. Smith and Yulia Tsvetkov and Sachin Kumar},
247
+ year={2025},
248
+ eprint={2505.03054},
249
+ archivePrefix={arXiv},
250
+ primaryClass={cs.AI},
251
+ url={https://arxiv.org/abs/2505.03054},
252
+ }
253
+
254
+ ```
blab_long_audio.py ADDED
@@ -0,0 +1,352 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import datasets
4
+ from datasets import Features, Value, DatasetInfo, SplitGenerator, BuilderConfig, LargeList, Sequence
5
+
6
+
7
+
8
+ TASKS = [
9
+ "word_localization",
10
+ "advertisement_localization",
11
+ "named_entity_localization",
12
+ "speaker_number_estimation",
13
+ "entire_duration",
14
+ "event_duration",
15
+ "emotion_ranking",
16
+ "emotion_reasoning",
17
+ ]
18
+
19
+ _DOCUMENT_DATASET_VERSION = "1.0.0"
20
+
21
+
22
+
23
+
24
+ # --- Main Dataset Builder Class ---
25
+ class BLAB(datasets.GeneratorBasedBuilder):
26
+ """class BLAB(object): A dataset builder supporting various audio QA tasks,
27
+ each with its own specific data schema.
28
+ """
29
+ BUILDER_CONFIGS = [
30
+ BuilderConfig(
31
+ name=task,
32
+ version=datasets.Version(_DOCUMENT_DATASET_VERSION),
33
+ description=f"BLAB dataset for task: {task}",
34
+ ) for task in TASKS
35
+ ]
36
+
37
+ def _info(self):
38
+ """Defines the dataset schema (features) based on the selected task configuration."""
39
+ # --- Schema Definitions for each individual task ---
40
+
41
+ if self.config.name == "word_localization":
42
+ return DatasetInfo(
43
+ features=Features({
44
+ "video_url": Value("string"),
45
+ "audio": Value("string"),
46
+ "question": Value("string"),
47
+ "groundtruth": LargeList(
48
+ feature=Features({
49
+ "word": Value("string"),
50
+ "start": Value("float32"),
51
+ "end": Value("float32"),
52
+ })
53
+ )
54
+ }),
55
+ description="Schema for the Word Localization task: segmenting and labeling words.",
56
+ license="MIT",
57
+ )
58
+
59
+ elif self.config.name == "advertisement_localization":
60
+ return DatasetInfo(
61
+ features=Features({
62
+ "video_url": Value("string"),
63
+ "audio": Value("string"),
64
+ "question": Value("string"),
65
+ "groundtruth": Features({
66
+ "ads_segment": LargeList(
67
+ feature=Features({
68
+ "text": Value("string"),
69
+ "start": Value("float32"),
70
+ "end": Value("float32"),
71
+ }),
72
+ ),
73
+ "word_timestamp": LargeList(
74
+ feature=Features({
75
+ "word": Value("string"),
76
+ "start": Value("float32"),
77
+ "end": Value("float32"),
78
+ }),
79
+ ),
80
+ })
81
+ }),
82
+ description="Schema for Advertisement Localization task: identifying ad segments and their transcripts.",
83
+ # ... (other metadata)
84
+ )
85
+
86
+ elif self.config.name == "named_entity_localization":
87
+ return DatasetInfo(
88
+ features=Features({
89
+ "video_url": Value("string"),
90
+ "audio": Value("string"),
91
+ "question": Value("string"),
92
+ "groundtruth": Features({
93
+ "entities": LargeList(
94
+ feature=Features({
95
+ "entity_type": Value("string"),
96
+ "entity": Value("string"),
97
+ "start": Value("float32"),
98
+ "end": Value("float32"),
99
+ }),
100
+ ),
101
+ "word_timestamp": LargeList(
102
+ feature=Features({
103
+ "word": Value("string"),
104
+ "start": Value("float32"),
105
+ "end": Value("float32"),
106
+ }),
107
+ ),
108
+ })
109
+ }),
110
+ description="Schema for Named Entity Localization task: identifying specific entities and their timestamps.",
111
+ # ... (other metadata)
112
+ )
113
+
114
+ elif self.config.name == "speaker_number_estimation":
115
+ return DatasetInfo(
116
+ features=Features({
117
+ "video_url": Value("string"),
118
+ "audio": Value("string"),
119
+ "question": Value("string"),
120
+ "groundtruth": Sequence(Value("int32"))
121
+ }),
122
+ description="Schema for Speaker Number Estimation task: counting speakers in a segment.",
123
+ # ... (other metadata)
124
+ )
125
+
126
+ elif self.config.name == "entire_duration":
127
+ return DatasetInfo(
128
+ features=Features({
129
+ "video_url": Value("string"),
130
+ "audio": Value("string"),
131
+ "question": Value("string"),
132
+ "groundtruth": Value("float32")
133
+ }),
134
+ description="Schema for Entire Duration task: determining the total duration of an audio.",
135
+
136
+ )
137
+
138
+ elif self.config.name == "event_duration":
139
+ return DatasetInfo(
140
+ features=Features({
141
+ "video_url": Value("string"),
142
+ "audio": Value("string"),
143
+ "question": Value("string"),
144
+ "groundtruth": Value("float32"),
145
+ "answer_type": Value("string"),
146
+ }),
147
+ description="Schema for Event Duration task: identifying and timing specific events.",
148
+ # ... (other metadata)
149
+ )
150
+
151
+ elif self.config.name == "emotion_ranking":
152
+ return DatasetInfo(
153
+ features=Features({
154
+ "video_url": Value("string"),
155
+ "audio": Value("string"),
156
+ "question": Value("string"),
157
+ "type": Value("string"),
158
+ "correct_option": Value("string"),
159
+ "option_A": Value("string"),
160
+ "option_B": Value("string"),
161
+ "option_C": Value("string"),
162
+ "option_D": Value("string"),
163
+ "option_E": Value("string"),
164
+ "correct_answer": Value("string"), # Stores the correct_answer string
165
+ }),
166
+ description="Schema for Emotion Ranking task: selecting the best emotion option.",
167
+ # ... (other metadata)
168
+ )
169
+
170
+ elif self.config.name == "emotion_reasoning":
171
+ return DatasetInfo(
172
+ features=Features({
173
+ "video_url": Value("string"),
174
+ "audio": Value("string"),
175
+ "question": Value("string"),
176
+ "type": Value("string"),
177
+ "correct_option": Value("string"),
178
+ "option_A": Value("string"),
179
+ "option_B": Value("string"),
180
+ "option_C": Value("string"),
181
+ "option_D": Value("string"),
182
+ "correct_answer": Value("string"), # Stores the correct_answer string
183
+ }),
184
+ description="Schema for Emotion Reasoning task: explaining emotional context.",
185
+ # ... (other metadata)
186
+ )
187
+ else:
188
+ raise ValueError(f"Unknown config name: {self.config.name}")
189
+
190
+ def _split_generators(self, dl_manager):
191
+ """Returns SplitGenerators based on the selected task configuration."""
192
+ data_files = {}
193
+
194
+ if self.config.name == "word_localization":
195
+ data_files = {"word_localization": "blab_long_audio/word_localization.json"}
196
+ elif self.config.name == "advertisement_localization":
197
+ data_files = {"advertisement_localization": "blab_long_audio/advertisement_localization.json"}
198
+ elif self.config.name == "named_entity_localization":
199
+ data_files = {"named_entity_localization": "blab_long_audio/named_entity_localization.json"}
200
+ elif self.config.name == "speaker_number_estimation":
201
+ data_files = {"speaker_number_estimation": "blab_long_audio/speaker_number_estimation.json"}
202
+ elif self.config.name == "entire_duration":
203
+ data_files = {"entire_duration": "blab_long_audio/entire_duration.json"}
204
+ elif self.config.name == "event_duration":
205
+ data_files = {"event_duration": "blab_long_audio/event_duration.json"}
206
+ elif self.config.name == "emotion_ranking":
207
+ data_files = {"emotion_ranking": "blab_long_audio/emotion_ranking.json"}
208
+ elif self.config.name == "emotion_reasoning":
209
+ data_files = {"emotion_reasoning": "blab_long_audio/emotion_reasoning.json"}
210
+ else:
211
+ raise ValueError(f"Unknown config name: {self.config.name}")
212
+
213
+ resolved_data_files = dl_manager.download_and_extract(data_files)
214
+
215
+ generators = []
216
+ for split_name, filepath in resolved_data_files.items():
217
+ generators.append(
218
+ SplitGenerator(
219
+ name=split_name,
220
+ gen_kwargs={"filepath": filepath}
221
+ )
222
+ )
223
+ return generators
224
+
225
+ def _generate_examples(self, filepath):
226
+ """Yields examples from the dataset files, parsing data based on the active config."""
227
+ with open(filepath, 'r', encoding='utf-8') as f:
228
+ all_data = json.load(f) # For .json files, load the entire array
229
+
230
+ for id_, data in enumerate(all_data):
231
+ try:
232
+ # Common fields for all tasks (handle missing with .get)
233
+ video_url = data.get("video_url", None)
234
+ audio = data.get("audio", None)
235
+ question = data.get("question", None)
236
+ #answer_type = data.get("answer_type", None)
237
+
238
+ example = {
239
+ "video_url": video_url,
240
+ "audio": audio,
241
+ "question": question,
242
+ #"answer_type": answer_type # Include as it's a common field in your schemas
243
+ }
244
+
245
+ # --- Task-specific groundtruth and other fields ---
246
+ if self.config.name == "word_localization":
247
+ raw_groundtruth = data.get("groundtruth", [])
248
+ processed_groundtruth = []
249
+ for item in raw_groundtruth:
250
+ if isinstance(item, dict):
251
+ processed_groundtruth.append({
252
+ "word": item.get("word", None),
253
+ "start": item.get("start", None),
254
+ "end": item.get("end", None),
255
+ })
256
+ example["groundtruth"] = processed_groundtruth
257
+
258
+ elif self.config.name == "advertisement_localization":
259
+ raw_groundtruth = data.get("groundtruth", {})
260
+ raw_ads_segments = raw_groundtruth.get("ads_segment", [])
261
+ processed_ads_segments = []
262
+ for ad_item in raw_ads_segments:
263
+ if isinstance(ad_item, dict):
264
+ processed_ads_segments.append({
265
+ "text": ad_item.get("text", None),
266
+ "start": ad_item.get("start", None),
267
+ "end": ad_item.get("end", None),
268
+ })
269
+ raw_word_timestamps = raw_groundtruth.get("word_timestamp", [])
270
+ processed_word_timestamps = []
271
+ for word_item in raw_word_timestamps:
272
+ if isinstance(word_item, dict):
273
+ processed_word_timestamps.append({
274
+ "word": word_item.get("word", None),
275
+ "start": word_item.get("start", None),
276
+ "end": word_item.get("end", None),
277
+ })
278
+ example["groundtruth"] = {
279
+ "ads_segment": processed_ads_segments,
280
+ "word_timestamp": processed_word_timestamps,
281
+ }
282
+
283
+ elif self.config.name == "named_entity_localization":
284
+ raw_groundtruth = data.get("groundtruth", {})
285
+ raw_entities = raw_groundtruth.get("entities", [])
286
+ processed_entities = []
287
+ for entity_item in raw_entities:
288
+ if isinstance(entity_item, dict):
289
+ processed_entities.append({
290
+ "entity_type": entity_item.get("entity_type", None),
291
+ "entity": entity_item.get("entity", None),
292
+ "start": entity_item.get("start", None),
293
+ "end": entity_item.get("end", None),
294
+ })
295
+ raw_word_timestamps = raw_groundtruth.get("word_timestamp", [])
296
+ processed_word_timestamps = []
297
+ for word_item in raw_word_timestamps:
298
+ if isinstance(word_item, dict):
299
+ processed_word_timestamps.append({
300
+ "word": word_item.get("word", None),
301
+ "start": word_item.get("start", None),
302
+ "end": word_item.get("end", None),
303
+ })
304
+ example["groundtruth"] = {
305
+ "entities": processed_entities,
306
+ "word_timestamp": processed_word_timestamps,
307
+ }
308
+
309
+ elif self.config.name == "speaker_number_estimation":
310
+ raw_groundtruth = data.get("groundtruth", None)
311
+ processed_groundtruth = []
312
+ if raw_groundtruth is not None:
313
+ if isinstance(raw_groundtruth, list):
314
+ processed_groundtruth = [int(x) for x in raw_groundtruth if isinstance(x, (int, float))]
315
+ elif isinstance(raw_groundtruth, (int, float)):
316
+ processed_groundtruth = [int(raw_groundtruth)]
317
+
318
+ example["groundtruth"] = processed_groundtruth
319
+
320
+ elif self.config.name == "entire_duration":
321
+ example["groundtruth"] = data.get("groundtruth", None) # Assuming float
322
+
323
+ elif self.config.name == "event_duration":
324
+ example["groundtruth"] = data.get("groundtruth", None)
325
+ example["answer_type"] = data.get("answer_type", None)
326
+
327
+ elif self.config.name == "emotion_ranking":
328
+ example["type"] = data.get("type", None)
329
+ example["correct_option"] = data.get("correct_option", None)
330
+ example["option_A"] = data.get("option_A", None)
331
+ example["option_B"] = data.get("option_B", None)
332
+ example["option_C"] = data.get("option_C", None)
333
+ example["option_D"] = data.get("option_D", None)
334
+ example["option_E"] = data.get("option_E", None)
335
+ example["correct_answer"] = data.get("correct_answer", None)
336
+
337
+ elif self.config.name == "emotion_reasoning":
338
+ example["type"] = data.get("type", None)
339
+ example["correct_option"] = data.get("correct_option", None)
340
+ example["option_A"] = data.get("option_A", None)
341
+ example["option_B"] = data.get("option_B", None)
342
+ example["option_C"] = data.get("option_C", None)
343
+ example["option_D"] = data.get("option_D", None)
344
+ example["correct_answer"] = data.get("correct_answer", None)
345
+
346
+ else:
347
+ raise ValueError(f"Unknown config name: {self.config.name}. This should not happen if BUILDER_CONFIGS and _info are consistent.")
348
+
349
+ yield id_, example
350
+
351
+ except Exception as e:
352
+ print(f"Error processing example {id_} in {filepath} for config {self.config.name}: {e}")