Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Turkish
Size:
< 1K
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """datas.""" | |
| import csv | |
| import datasets | |
| from datasets.tasks import TextClassification | |
| _CITATION = """\ | |
| @inproceedings{Casanueva2020, | |
| author = pnr, | |
| title = {sentiment}, | |
| year = {2022}, | |
| month = {mar}, | |
| note = {Data available at https://github.com/PnrSvc/dataset}, | |
| url = {a}, | |
| booktitle = {a} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| description | |
| """ | |
| _HOMEPAGE = "https://github.com/PnrSvc/dataset" | |
| _TRAIN_DOWNLOAD_URL = ( | |
| "https://github.com/PnrSvc/dataset/blob/main/turkish/train.csv" | |
| ) | |
| _TEST_DOWNLOAD_URL = "https://github.com/PnrSvc/dataset/blob/main/turkish/test.csv" | |
| class Datas(datasets.GeneratorBasedBuilder): | |
| """datas dataset.""" | |
| VERSION = datasets.Version("1.1.0") | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "label": datasets.Value("string"), | |
| "target": datasets.features.ClassLabel( | |
| names=[ | |
| "negative", | |
| "neutral", | |
| "positive" | |
| ] | |
| ), | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| citation=_CITATION, | |
| task_templates=[TextClassification(text_column="label", label_column="target")], | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) | |
| test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), | |
| datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), | |
| ] | |
| def _generate_examples(self, filepath): | |
| """Yields examples as (key, example) tuples.""" | |
| with open(filepath, encoding="utf-8") as f: | |
| csv_reader = csv.reader(f, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True) | |
| # call next to skip header | |
| next(csv_reader) | |
| for id_, row in enumerate(csv_reader): | |
| label, target = row | |
| yield id_, {"text": label, "label": target} |