Datasets:
ArXiv:
License:
| import os | |
| import os.path as osp | |
| import pathlib | |
| import open3d as o3d | |
| import numpy as np | |
| import pandas as pd | |
| import zarr | |
| import pickle | |
| import tqdm | |
| # helper functions | |
| # ================ | |
| def _get_groups_df(samples_group): | |
| rows = dict() | |
| for key, group in samples_group.items(): | |
| rows[key] = group.attrs.asdict() | |
| groups_df = pd.DataFrame(data=list(rows.values()), index=rows.keys()) | |
| groups_df.drop_duplicates(inplace=True) | |
| groups_df['group_key'] = groups_df.index | |
| return groups_df | |
| class VRFoldingDatasetExample: | |
| def __init__(self, | |
| # zarr | |
| zarr_path: str, | |
| num_pc_sample: int = 4000, | |
| num_views: int = 4, | |
| only_foreground_pc: bool = True, | |
| vis=False, | |
| # catch all | |
| **kwargs): | |
| """ | |
| simple dataset class to handle data in .zarr format | |
| """ | |
| super().__init__() | |
| path = pathlib.Path(os.path.expanduser(zarr_path)) | |
| assert(path.exists()) | |
| self.zarr_path = str(path.absolute()) | |
| root = zarr.open(self.zarr_path, mode='r') | |
| samples_group = root['samples'] | |
| # extract common info from sample group | |
| _, sample_group = next(samples_group.groups()) | |
| print(sample_group.tree()) | |
| # load group metadata | |
| groups_df = _get_groups_df((samples_group)) | |
| # check if index is sorted | |
| assert(groups_df.index.is_monotonic_increasing) | |
| groups_df['idx'] = np.arange(len(groups_df)) | |
| # global state | |
| self.samples_group = samples_group | |
| self.groups_df = groups_df | |
| # params | |
| self.num_pc_sample = num_pc_sample | |
| self.num_views = num_views | |
| self.only_foreground_pc = only_foreground_pc | |
| self.vis = vis | |
| video_info_path = self.zarr_path | |
| # find all video sequences | |
| self.find_video_idxs(video_info_path) | |
| # find all valid grip intervals | |
| self.find_valid_grip_intervals(video_info_path) | |
| def find_video_idxs(self, video_seq_cache_dir: str): | |
| os.makedirs(video_seq_cache_dir, exist_ok=True) | |
| cache_path = os.path.join(video_seq_cache_dir, 'video_seq.pkl') | |
| if os.path.exists(cache_path): | |
| print('Loading video sequences cache in {}'.format(cache_path)) | |
| with open(cache_path, 'rb') as f: | |
| self.video_to_idxs_dict, self.idx_to_video_list = pickle.load(f) | |
| else: | |
| data_length = self.__len__() | |
| self.video_to_idxs_dict = dict() | |
| self.idx_to_video_list = [] | |
| print('Finding video sequences...') | |
| for idx in tqdm.tqdm(range(data_length), ncols=0): | |
| dataset_idx = idx | |
| row = self.groups_df.iloc[dataset_idx] | |
| group = self.samples_group[row.group_key] | |
| attrs = group.attrs.asdict() | |
| video_id = attrs['video_id'] | |
| if video_id not in self.video_to_idxs_dict: | |
| self.video_to_idxs_dict[video_id] = [] | |
| self.video_to_idxs_dict[video_id].append(idx) | |
| self.idx_to_video_list.append(video_id) | |
| print('Finish finding video sequences!') | |
| with open(cache_path, 'wb') as f: | |
| pickle.dump((self.video_to_idxs_dict, self.idx_to_video_list), f) | |
| print('Saving video sequences cache to {}'.format(cache_path)) | |
| def find_valid_grip_intervals(self, video_seq_cache_dir: str): | |
| os.makedirs(video_seq_cache_dir, exist_ok=True) | |
| def is_valid_grip(grip_vertex_ids): | |
| return grip_vertex_ids[0] != -1 | |
| cache_path = os.path.join(video_seq_cache_dir, 'video_grip_interval_v2.pkl') | |
| if os.path.exists(cache_path): | |
| print('Loading video grip interval cache in {}'.format(cache_path)) | |
| with open(cache_path, 'rb') as f: | |
| self.interval_to_idxs_dict, self.idx_to_interval_list = pickle.load(f) | |
| else: | |
| data_length = self.__len__() | |
| self.interval_to_idxs_dict = dict() | |
| self.idx_to_interval_list = [] | |
| assert self.video_to_idxs_dict is not None | |
| print('Finding video valid grip intervals...') | |
| in_interval = False | |
| interval_count = 0 | |
| for idx in tqdm.tqdm(range(data_length), ncols=0): | |
| dataset_idx = idx | |
| row = self.groups_df.iloc[dataset_idx] | |
| group = self.samples_group[row.group_key] | |
| attrs = group.attrs.asdict() | |
| video_id = attrs['video_id'] | |
| grip_point_group = group['grip_vertex_id'] | |
| left_grip_vertex_ids = grip_point_group['left_grip_vertex_id'][:] | |
| right_grip_vertex_ids = grip_point_group['right_grip_vertex_id'][:] | |
| if not in_interval and (is_valid_grip(left_grip_vertex_ids) or is_valid_grip(right_grip_vertex_ids)): | |
| # interval start if any hand is grasped | |
| self.interval_to_idxs_dict[interval_count] = [] | |
| in_interval = True | |
| if in_interval: | |
| self.interval_to_idxs_dict[interval_count].append(idx) | |
| self.idx_to_interval_list.append(interval_count) | |
| else: | |
| self.idx_to_interval_list.append(-1) | |
| if in_interval and not is_valid_grip(left_grip_vertex_ids) and not is_valid_grip(right_grip_vertex_ids) \ | |
| or self.video_to_idxs_dict[video_id][-1] == idx: | |
| # interval end (both hands are released) or video end | |
| in_interval = False | |
| interval_count += 1 | |
| print('Finish finding {} valid grip intervals!'.format(interval_count)) | |
| with open(cache_path, 'wb') as f: | |
| pickle.dump((self.interval_to_idxs_dict, self.idx_to_interval_list), f) | |
| print('Saving grip interval cache to {}'.format(cache_path)) | |
| def __len__(self): | |
| return len(self.groups_df) | |
| def data_io(self, idx: int) -> dict: | |
| dataset_idx = idx | |
| row = self.groups_df.iloc[dataset_idx] | |
| group = self.samples_group[row.group_key] | |
| # io | |
| attrs = group.attrs.asdict() | |
| instance_id = attrs['instance_id'] | |
| scale = attrs['scale'] | |
| pc_group = group['point_cloud'] | |
| mesh_group = group['mesh'] | |
| grip_point_group = group['grip_vertex_id'] | |
| hand_pose_group = group['hand_pose'] | |
| if 'cls' in pc_group: | |
| pc_cls = pc_group['cls'][:] | |
| pc_cls[pc_cls > 0] = 1 # only two classes (foreground + background) | |
| else: | |
| pc_cls = np.zeros(pc_group['point'][:].shape[0]).astype(np.uint8) | |
| data = { | |
| 'cloth_sim_verts': mesh_group['cloth_verts'][:], # complete mesh vertices in task space | |
| 'cloth_nocs_verts': mesh_group['cloth_nocs_verts'][:], # complete mesh vertices in NOCS space | |
| 'cloth_faces_tri': mesh_group['cloth_faces_tri'][:], # mesh faces triangles | |
| 'pc_nocs': pc_group['nocs'][:], # NOCS coordinates of input partial point cloud | |
| 'pc_sim': pc_group['point'][:], # XYZ of input partial point cloud | |
| 'pc_sim_rgb': pc_group['rgb'][:], # RGB of input partial point cloud | |
| 'pc_sizes': pc_group['sizes'][:], # per-view number of points in input partial point cloud | |
| 'pc_cls': pc_cls, # classification label of input partial point cloud | |
| 'left_grip_vertex_ids': grip_point_group['left_grip_vertex_id'][:], # left-hand grasped mesh vertex id | |
| 'right_grip_vertex_ids': grip_point_group['right_grip_vertex_id'][:], # right-hand grasped mesh vertex id | |
| 'left_hand_pos': hand_pose_group['left_hand_pos'][:], # the positions of 25 finger bones in left hand | |
| 'right_hand_pos': hand_pose_group['right_hand_pos'][:], # the positions of 25 finger bones in right hand | |
| 'left_hand_euler': hand_pose_group['left_hand_euler'][:], # the euler angles of 25 finger bones in left hand | |
| 'right_hand_euler': hand_pose_group['right_hand_euler'][:], # the euler angles of 25 finger bones in right hand | |
| 'video_id': attrs['video_id'], # video id | |
| 'scale': scale | |
| } | |
| return data | |
| def get_base_data(self, idx:int, seed:int, data_in: dict) -> dict: | |
| num_pc_sample = self.num_pc_sample | |
| num_views = self.num_views | |
| if self.only_foreground_pc: | |
| foreground_idxs = data_in['pc_cls'] == 0 | |
| if data_in['pc_cls'].shape[0] != data_in['pc_sim_rgb'].shape[0]: | |
| foreground_idxs = np.arange(data_in['pc_sim_rgb'].shape[0]) | |
| data_in['pc_sim_rgb'] = data_in['pc_sim_rgb'][foreground_idxs] | |
| data_in['pc_sim'] = data_in['pc_sim'][foreground_idxs] | |
| data_in['pc_nocs'] = data_in['pc_nocs'][foreground_idxs] | |
| data_in['pc_cls'] = data_in['pc_cls'][foreground_idxs] | |
| rs = np.random.RandomState(seed=seed) | |
| all_idxs = np.arange(len(data_in['pc_sim'])) | |
| all_num_views = len(data_in['pc_sizes']) | |
| if num_views < all_num_views: | |
| idxs_mask = np.zeros_like(all_idxs, dtype=np.bool) | |
| selected_view_idxs = np.sort(rs.choice(all_num_views, size=num_views, replace=False)) | |
| view_idxs = np.concatenate([[0], np.cumsum(data_in['pc_sizes'])]) | |
| for i in selected_view_idxs: | |
| idxs_mask[view_idxs[i]: view_idxs[i+1]] = True | |
| all_idxs = all_idxs[idxs_mask] | |
| if all_idxs.shape[0] >= num_pc_sample: | |
| selected_idxs = rs.choice(all_idxs, size=num_pc_sample, replace=False) | |
| else: | |
| np.random.seed(seed) | |
| np.random.shuffle(all_idxs) | |
| res_num = len(all_idxs) - num_pc_sample | |
| selected_idxs = np.concatenate([all_idxs, all_idxs[:res_num]], axis=0) | |
| pc_sim_rgb = data_in['pc_sim_rgb'][selected_idxs].astype(np.float32) / 255 | |
| pc_sim = data_in['pc_sim'][selected_idxs].astype(np.float32) | |
| pc_nocs = data_in['pc_nocs'][selected_idxs].astype(np.float32) | |
| pc_cls = data_in['pc_cls'][selected_idxs].astype(np.int64) | |
| pc_nocs[pc_cls != 0, :] = -1.0 | |
| dataset_idx = np.array([idx]) | |
| video_id = np.array([int(data_in['video_id'])]) | |
| scale = np.array([data_in['scale']]) | |
| cloth_sim_verts = data_in['cloth_sim_verts'] | |
| cloth_nocs_verts = data_in['cloth_nocs_verts'] | |
| left_grip_vertex_ids = data_in['left_grip_vertex_ids'] | |
| right_grip_vertex_ids = data_in['right_grip_vertex_ids'] | |
| left_grip_point_sim = np.array([-10., -10., -10.], dtype=np.float32) | |
| right_grip_point_sim = np.array([-10., -10., -10.], dtype=np.float32) | |
| left_grip_point_nocs = np.array([-2., -2., -2.], dtype=np.float32) | |
| right_grip_point_nocs = np.array([-2., -2., -2.], dtype=np.float32) | |
| is_left_hand_valid_grasp = False | |
| is_right_hand_valid_grasp = False | |
| for hand_id, grip_vertex_ids in enumerate((left_grip_vertex_ids, right_grip_vertex_ids)): | |
| if grip_vertex_ids[0] != -1: | |
| # valid grasp point on the garment | |
| grip_vertices_sim = cloth_sim_verts[grip_vertex_ids, :] | |
| mean_grip_point_sim = np.mean(grip_vertices_sim, axis=0) | |
| grip_vertices_nocs = cloth_nocs_verts[grip_vertex_ids, :] | |
| mean_grip_point_nocs = np.mean(grip_vertices_nocs, axis=0) | |
| if hand_id == 0: | |
| left_grip_point_sim = mean_grip_point_sim.astype(np.float32) | |
| left_grip_point_nocs = mean_grip_point_nocs.astype(np.float32) | |
| is_left_hand_valid_grasp = True | |
| else: | |
| right_grip_point_sim = mean_grip_point_sim.astype(np.float32) | |
| right_grip_point_nocs = mean_grip_point_nocs.astype(np.float32) | |
| is_right_hand_valid_grasp = True | |
| data = { | |
| 'x': pc_sim_rgb, # RGB of input partial point cloud | |
| 'y': pc_nocs, # NOCS coordinates of input partial point cloud | |
| 'pos': pc_sim, # XYZ of input partial point cloud | |
| 'cls': pc_cls, # classification label of input partial point cloud | |
| 'dataset_idx': dataset_idx, # dataset index | |
| 'video_id': video_id, # video id | |
| 'left_grip_point_sim': left_grip_point_sim, # left hand grasp-point in task space | |
| 'left_grip_point_nocs': left_grip_point_nocs, # left hand grasp-point in NOCS space | |
| 'right_grip_point_sim': right_grip_point_sim, # right hand grasp-point in task space | |
| 'right_grip_point_nocs': right_grip_point_nocs, # right hand grasp-point in NOCS space | |
| 'scale': scale | |
| } | |
| if self.vis: | |
| vis_list = [] | |
| pc_rgb_sim_pcd = o3d.geometry.PointCloud() | |
| pc_rgb_sim_pcd.points = o3d.utility.Vector3dVector(pc_sim) | |
| pc_rgb_sim_pcd.colors = o3d.utility.Vector3dVector(pc_sim_rgb) | |
| vis_list.append(pc_rgb_sim_pcd) | |
| mesh_sim_pcd = o3d.geometry.PointCloud() | |
| mesh_sim_pcd.points = o3d.utility.Vector3dVector(cloth_sim_verts) | |
| mesh_sim_pcd.colors = o3d.utility.Vector3dVector(cloth_nocs_verts) | |
| vis_list.append(mesh_sim_pcd.translate((0.8, 0., 0.))) | |
| if is_left_hand_valid_grasp: | |
| left_grasp_sphere = o3d.geometry.TriangleMesh.create_sphere(radius=0.05) | |
| left_grasp_sphere.paint_uniform_color([0.9, 0.1, 0.1]) # red | |
| left_grasp_sphere = left_grasp_sphere.translate(left_grip_point_sim) | |
| vis_list.append(left_grasp_sphere) | |
| if is_right_hand_valid_grasp: | |
| right_grasp_sphere = o3d.geometry.TriangleMesh.create_sphere(radius=0.05) | |
| right_grasp_sphere.paint_uniform_color([0.1, 0.1, 0.9]) # blue | |
| right_grasp_sphere = right_grasp_sphere.translate(right_grip_point_sim) | |
| vis_list.append(right_grasp_sphere) | |
| # visualization | |
| vis = o3d.visualization.Visualizer() | |
| vis.create_window(window_name='Press q or Esc to quit', width=1640, height=1080) | |
| for item in vis_list: | |
| vis.add_geometry(item) | |
| vis.get_render_option().load_from_json(osp.join(osp.curdir, 'render_option.json')) | |
| param = o3d.io.read_pinhole_camera_parameters(osp.join(os.getcwd(), 'view_point.json')) | |
| vis.get_view_control().convert_from_pinhole_camera_parameters(param) | |
| vis.run() | |
| param = vis.get_view_control().convert_to_pinhole_camera_parameters() | |
| o3d.io.write_pinhole_camera_parameters(osp.join(os.getcwd(), 'view_point.json'), param) | |
| vis.close() | |
| return data | |
| def __getitem__(self, idx: int) -> dict: | |
| raw_data = self.data_io(idx) | |
| input_data = self.get_base_data(idx, seed=idx, data_in=raw_data) | |
| return input_data | |
| if __name__=='__main__': | |
| os.chdir(osp.dirname(osp.realpath(__file__))) | |
| zarr_path = osp.join(osp.dirname(osp.realpath(__file__)), 'VR_Folding', 'vr_simulation_folding_dataset_example.zarr', 'Tshirt') | |
| print(zarr_path) | |
| dataset = VRFoldingDatasetExample(zarr_path=zarr_path, vis=True) | |
| for i in range(len(dataset)): | |
| if dataset.idx_to_interval_list[i] == -1: | |
| # skip static frame without valid grasp point | |
| continue | |
| data = dataset[i] | |
| video_id = data['video_id'] | |
| print(f'Reading sample {i}, video {video_id}! Press q or Esc on the window to quit visualization of current frame!') | |