Update README.md
Browse files
README.md
CHANGED
|
@@ -58,32 +58,6 @@ Paper appears 3 times:
|
|
| 58 |
- Day 3: Rank 10 → 41 points
|
| 59 |
- **Total Score: 137**
|
| 60 |
|
| 61 |
-
## 📋 Dataset Structure
|
| 62 |
-
|
| 63 |
-
### Columns
|
| 64 |
-
|
| 65 |
-
| Column | Type | Description |
|
| 66 |
-
|--------|------|-------------|
|
| 67 |
-
| `rank` | integer | Overall rank (1 = highest score) |
|
| 68 |
-
| `name` | string | Paper title |
|
| 69 |
-
| `times_trended` | integer | Number of days appeared on trending |
|
| 70 |
-
| `best_rank` | integer | Highest rank achieved (lowest number) |
|
| 71 |
-
| `avg_rank` | float | Average rank across all appearances |
|
| 72 |
-
| `median_rank` | integer | Median rank |
|
| 73 |
-
| `publish_date` | string | Paper publication date |
|
| 74 |
-
| `max_upvotes` | integer | Maximum upvotes received |
|
| 75 |
-
| `max_github_stars` | integer | Maximum GitHub stars for associated repo |
|
| 76 |
-
| `arxiv_link` | string | arXiv link to paper |
|
| 77 |
-
|
| 78 |
-
### Sample Data
|
| 79 |
-
|
| 80 |
-
```csv
|
| 81 |
-
rank,name,times_trended,best_rank,avg_rank,median_rank,publish_date,max_upvotes,max_github_stars,arxiv_link
|
| 82 |
-
1,LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models,432,2,11.28,11,"Mar 20, 2024",173,63300,https://arxiv.org/abs/2403.13372
|
| 83 |
-
2,PaddleOCR-VL: Boosting Multilingual Document Parsing via a 0.9B Ultra-Compact Vision-Language Model,124,1,3.35,3,"Oct 16, 2025",98,65400,https://arxiv.org/abs/2510.14528
|
| 84 |
-
3,MinerU2.5: A Decoupled Vision-Language Model for Efficient High-Resolution Document Parsing,179,2,10.82,9,"Sep 26, 2025",134,49600,https://arxiv.org/abs/2509.22186
|
| 85 |
-
```
|
| 86 |
-
|
| 87 |
## 🌟 Key Insights
|
| 88 |
|
| 89 |
### 1. Top 10 Most Trending Papers (2025)
|
|
@@ -159,141 +133,3 @@ rank,name,times_trended,best_rank,avg_rank,median_rank,publish_date,max_upvotes,
|
|
| 159 |
- PaddleOCR 3.0: 57,600 stars
|
| 160 |
- OmniFlatten: 50,300 stars
|
| 161 |
- MinerU2.5: 49,600 stars
|
| 162 |
-
|
| 163 |
-
### 5. Publication Timeline Insights
|
| 164 |
-
|
| 165 |
-
**Recent Papers (2025) Dominating:**
|
| 166 |
-
- 80%+ of top papers published in 2025
|
| 167 |
-
- Fast adoption cycle: trending within days of publication
|
| 168 |
-
- Community actively tracking latest research
|
| 169 |
-
|
| 170 |
-
**Older Papers with Staying Power:**
|
| 171 |
-
- LlamaFactory (Mar 2024) still trending heavily in 2025
|
| 172 |
-
- DINOv3 maintains consistent visibility
|
| 173 |
-
- High-impact tools have long trending tails
|
| 174 |
-
|
| 175 |
-
## 🔍 Use Cases
|
| 176 |
-
|
| 177 |
-
This dataset is valuable for:
|
| 178 |
-
|
| 179 |
-
1. **Research Trend Analysis**: Understanding which ML/AI topics gained traction in 2025
|
| 180 |
-
2. **Literature Review**: Identifying influential papers by community engagement
|
| 181 |
-
3. **Topic Discovery**: Finding emerging research directions (agents, document AI)
|
| 182 |
-
4. **Citation Strategy**: Papers with high trending scores often become highly cited
|
| 183 |
-
5. **Tool Discovery**: Many top papers include open-source implementations
|
| 184 |
-
6. **Academic Benchmarking**: Understanding what resonates with ML practitioners
|
| 185 |
-
7. **Technology Forecasting**: Early indicators of which research will impact products
|
| 186 |
-
8. **Educational Content**: Curating reading lists based on community interest
|
| 187 |
-
|
| 188 |
-
## 📈 Data Quality
|
| 189 |
-
|
| 190 |
-
- ✅ **Complete**: All 441 Wayback Machine snapshots processed
|
| 191 |
-
- ✅ **Consistent**: Single scoring methodology throughout
|
| 192 |
-
- ✅ **Rich Metadata**: Includes upvotes, GitHub stars, arXiv links
|
| 193 |
-
- ✅ **Validated**: Cross-referenced with HuggingFace Daily Papers
|
| 194 |
-
- ℹ️ **Coverage**: 2025 only (dataset is year-specific)
|
| 195 |
-
- ℹ️ **GitHub Stars**: Captured at time of trending, may be higher now
|
| 196 |
-
|
| 197 |
-
## 🚀 Quick Start
|
| 198 |
-
|
| 199 |
-
### Load with Hugging Face Datasets
|
| 200 |
-
|
| 201 |
-
```python
|
| 202 |
-
from datasets import load_dataset
|
| 203 |
-
|
| 204 |
-
# Load the dataset
|
| 205 |
-
dataset = load_dataset("ronantakizawa/huggingface-top-papers")
|
| 206 |
-
|
| 207 |
-
# Get top 10 papers
|
| 208 |
-
df = dataset['train'].to_pandas()
|
| 209 |
-
top_10 = df.head(10)
|
| 210 |
-
print(top_10[['rank', 'name', 'times_trended', 'max_github_stars']])
|
| 211 |
-
```
|
| 212 |
-
|
| 213 |
-
### Load with Pandas
|
| 214 |
-
|
| 215 |
-
```python
|
| 216 |
-
import pandas as pd
|
| 217 |
-
|
| 218 |
-
url = "https://huggingface.co/datasets/ronantakizawa/huggingface-top-papers/resolve/main/huggingface-top-papers.csv"
|
| 219 |
-
df = pd.read_csv(url)
|
| 220 |
-
|
| 221 |
-
# Find papers with most GitHub stars
|
| 222 |
-
top_starred = df.nlargest(10, 'max_github_stars')
|
| 223 |
-
print(top_starred[['name', 'max_github_stars', 'times_trended']])
|
| 224 |
-
```
|
| 225 |
-
|
| 226 |
-
### Example Analyses
|
| 227 |
-
|
| 228 |
-
```python
|
| 229 |
-
# Find agent-related papers
|
| 230 |
-
agent_papers = df[df['name'].str.contains('Agent', case=False)]
|
| 231 |
-
print(f"Agent papers: {len(agent_papers)}")
|
| 232 |
-
|
| 233 |
-
# Papers that appeared most frequently
|
| 234 |
-
most_consistent = df.nlargest(10, 'times_trended')
|
| 235 |
-
|
| 236 |
-
# Papers with best average ranking
|
| 237 |
-
highest_quality = df.nsmallest(10, 'avg_rank')
|
| 238 |
-
|
| 239 |
-
# Community favorites (upvotes + stars)
|
| 240 |
-
df['engagement'] = df['max_upvotes'] + (df['max_github_stars'] / 100)
|
| 241 |
-
most_engaged = df.nlargest(10, 'engagement')
|
| 242 |
-
```
|
| 243 |
-
|
| 244 |
-
## 🔗 Related Datasets
|
| 245 |
-
|
| 246 |
-
- **GitHub Top Developers** (2015-2025) - by same author
|
| 247 |
-
- **TikTok Trending Hashtags** (2022-2025) - by same author
|
| 248 |
-
- **Twitter Trending Hashtags** (2020-2025) - by same author
|
| 249 |
-
- **HuggingFace Papers** (raw data - 441 snapshots)
|
| 250 |
-
|
| 251 |
-
## 📝 Citation
|
| 252 |
-
|
| 253 |
-
If you use this dataset in your research or project, please cite:
|
| 254 |
-
|
| 255 |
-
```bibtex
|
| 256 |
-
@dataset{huggingface_top_papers_2025,
|
| 257 |
-
title={HuggingFace Top Trending Papers (2025)},
|
| 258 |
-
author={Ronan Takizawa},
|
| 259 |
-
year={2025},
|
| 260 |
-
publisher={Hugging Face},
|
| 261 |
-
howpublished={\url{https://huggingface.co/datasets/ronantakizawa/huggingface-top-papers}},
|
| 262 |
-
note={Derived from Wayback Machine snapshots of HuggingFace Daily Papers, 441 snapshots}
|
| 263 |
-
}
|
| 264 |
-
```
|
| 265 |
-
|
| 266 |
-
## 🤝 Contributing
|
| 267 |
-
|
| 268 |
-
Found an issue? Suggestions for improvement?
|
| 269 |
-
- Open an issue on the [GitHub repository](https://github.com/ronantakizawa)
|
| 270 |
-
- Submit feedback through Hugging Face discussions
|
| 271 |
-
|
| 272 |
-
## ⚠️ Disclaimer
|
| 273 |
-
|
| 274 |
-
This dataset is derived from public Wayback Machine snapshots of HuggingFace Daily Papers. It represents:
|
| 275 |
-
|
| 276 |
-
- **Community interest and visibility**, not absolute research quality
|
| 277 |
-
- **Trending patterns**, which may favor practical tools over pure theory
|
| 278 |
-
- **English-language papers** primarily (HuggingFace audience bias)
|
| 279 |
-
- **2025 snapshot** of the ML/AI research landscape
|
| 280 |
-
|
| 281 |
-
Trending algorithms and their criteria are not publicly documented. This dataset captures historical visibility on HuggingFace's curated daily papers feed.
|
| 282 |
-
|
| 283 |
-
## 📄 License
|
| 284 |
-
|
| 285 |
-
MIT License - Free to use with attribution
|
| 286 |
-
|
| 287 |
-
---
|
| 288 |
-
|
| 289 |
-
**Dataset Details:**
|
| 290 |
-
- **Created**: December 1, 2025
|
| 291 |
-
- **Coverage**: January 2025 → November 2025
|
| 292 |
-
- **Last Updated**: December 1, 2025
|
| 293 |
-
- **Version**: 1.0
|
| 294 |
-
- **Maintainer**: Ronan Takizawa
|
| 295 |
-
- **Contact**: [Hugging Face Profile](https://huggingface.co/ronantakizawa)
|
| 296 |
-
|
| 297 |
-
---
|
| 298 |
-
|
| 299 |
-
*Part of a series of trending data datasets capturing temporal patterns across different platforms (GitHub, TikTok, Twitter, HuggingFace Papers, Yahoo Finance).*
|
|
|
|
| 58 |
- Day 3: Rank 10 → 41 points
|
| 59 |
- **Total Score: 137**
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
## 🌟 Key Insights
|
| 62 |
|
| 63 |
### 1. Top 10 Most Trending Papers (2025)
|
|
|
|
| 133 |
- PaddleOCR 3.0: 57,600 stars
|
| 134 |
- OmniFlatten: 50,300 stars
|
| 135 |
- MinerU2.5: 49,600 stars
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|