ronantakizawa commited on
Commit
b2b5669
·
verified ·
1 Parent(s): dde82b5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -164
README.md CHANGED
@@ -58,32 +58,6 @@ Paper appears 3 times:
58
  - Day 3: Rank 10 → 41 points
59
  - **Total Score: 137**
60
 
61
- ## 📋 Dataset Structure
62
-
63
- ### Columns
64
-
65
- | Column | Type | Description |
66
- |--------|------|-------------|
67
- | `rank` | integer | Overall rank (1 = highest score) |
68
- | `name` | string | Paper title |
69
- | `times_trended` | integer | Number of days appeared on trending |
70
- | `best_rank` | integer | Highest rank achieved (lowest number) |
71
- | `avg_rank` | float | Average rank across all appearances |
72
- | `median_rank` | integer | Median rank |
73
- | `publish_date` | string | Paper publication date |
74
- | `max_upvotes` | integer | Maximum upvotes received |
75
- | `max_github_stars` | integer | Maximum GitHub stars for associated repo |
76
- | `arxiv_link` | string | arXiv link to paper |
77
-
78
- ### Sample Data
79
-
80
- ```csv
81
- rank,name,times_trended,best_rank,avg_rank,median_rank,publish_date,max_upvotes,max_github_stars,arxiv_link
82
- 1,LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models,432,2,11.28,11,"Mar 20, 2024",173,63300,https://arxiv.org/abs/2403.13372
83
- 2,PaddleOCR-VL: Boosting Multilingual Document Parsing via a 0.9B Ultra-Compact Vision-Language Model,124,1,3.35,3,"Oct 16, 2025",98,65400,https://arxiv.org/abs/2510.14528
84
- 3,MinerU2.5: A Decoupled Vision-Language Model for Efficient High-Resolution Document Parsing,179,2,10.82,9,"Sep 26, 2025",134,49600,https://arxiv.org/abs/2509.22186
85
- ```
86
-
87
  ## 🌟 Key Insights
88
 
89
  ### 1. Top 10 Most Trending Papers (2025)
@@ -159,141 +133,3 @@ rank,name,times_trended,best_rank,avg_rank,median_rank,publish_date,max_upvotes,
159
  - PaddleOCR 3.0: 57,600 stars
160
  - OmniFlatten: 50,300 stars
161
  - MinerU2.5: 49,600 stars
162
-
163
- ### 5. Publication Timeline Insights
164
-
165
- **Recent Papers (2025) Dominating:**
166
- - 80%+ of top papers published in 2025
167
- - Fast adoption cycle: trending within days of publication
168
- - Community actively tracking latest research
169
-
170
- **Older Papers with Staying Power:**
171
- - LlamaFactory (Mar 2024) still trending heavily in 2025
172
- - DINOv3 maintains consistent visibility
173
- - High-impact tools have long trending tails
174
-
175
- ## 🔍 Use Cases
176
-
177
- This dataset is valuable for:
178
-
179
- 1. **Research Trend Analysis**: Understanding which ML/AI topics gained traction in 2025
180
- 2. **Literature Review**: Identifying influential papers by community engagement
181
- 3. **Topic Discovery**: Finding emerging research directions (agents, document AI)
182
- 4. **Citation Strategy**: Papers with high trending scores often become highly cited
183
- 5. **Tool Discovery**: Many top papers include open-source implementations
184
- 6. **Academic Benchmarking**: Understanding what resonates with ML practitioners
185
- 7. **Technology Forecasting**: Early indicators of which research will impact products
186
- 8. **Educational Content**: Curating reading lists based on community interest
187
-
188
- ## 📈 Data Quality
189
-
190
- - ✅ **Complete**: All 441 Wayback Machine snapshots processed
191
- - ✅ **Consistent**: Single scoring methodology throughout
192
- - ✅ **Rich Metadata**: Includes upvotes, GitHub stars, arXiv links
193
- - ✅ **Validated**: Cross-referenced with HuggingFace Daily Papers
194
- - ℹ️ **Coverage**: 2025 only (dataset is year-specific)
195
- - ℹ️ **GitHub Stars**: Captured at time of trending, may be higher now
196
-
197
- ## 🚀 Quick Start
198
-
199
- ### Load with Hugging Face Datasets
200
-
201
- ```python
202
- from datasets import load_dataset
203
-
204
- # Load the dataset
205
- dataset = load_dataset("ronantakizawa/huggingface-top-papers")
206
-
207
- # Get top 10 papers
208
- df = dataset['train'].to_pandas()
209
- top_10 = df.head(10)
210
- print(top_10[['rank', 'name', 'times_trended', 'max_github_stars']])
211
- ```
212
-
213
- ### Load with Pandas
214
-
215
- ```python
216
- import pandas as pd
217
-
218
- url = "https://huggingface.co/datasets/ronantakizawa/huggingface-top-papers/resolve/main/huggingface-top-papers.csv"
219
- df = pd.read_csv(url)
220
-
221
- # Find papers with most GitHub stars
222
- top_starred = df.nlargest(10, 'max_github_stars')
223
- print(top_starred[['name', 'max_github_stars', 'times_trended']])
224
- ```
225
-
226
- ### Example Analyses
227
-
228
- ```python
229
- # Find agent-related papers
230
- agent_papers = df[df['name'].str.contains('Agent', case=False)]
231
- print(f"Agent papers: {len(agent_papers)}")
232
-
233
- # Papers that appeared most frequently
234
- most_consistent = df.nlargest(10, 'times_trended')
235
-
236
- # Papers with best average ranking
237
- highest_quality = df.nsmallest(10, 'avg_rank')
238
-
239
- # Community favorites (upvotes + stars)
240
- df['engagement'] = df['max_upvotes'] + (df['max_github_stars'] / 100)
241
- most_engaged = df.nlargest(10, 'engagement')
242
- ```
243
-
244
- ## 🔗 Related Datasets
245
-
246
- - **GitHub Top Developers** (2015-2025) - by same author
247
- - **TikTok Trending Hashtags** (2022-2025) - by same author
248
- - **Twitter Trending Hashtags** (2020-2025) - by same author
249
- - **HuggingFace Papers** (raw data - 441 snapshots)
250
-
251
- ## 📝 Citation
252
-
253
- If you use this dataset in your research or project, please cite:
254
-
255
- ```bibtex
256
- @dataset{huggingface_top_papers_2025,
257
- title={HuggingFace Top Trending Papers (2025)},
258
- author={Ronan Takizawa},
259
- year={2025},
260
- publisher={Hugging Face},
261
- howpublished={\url{https://huggingface.co/datasets/ronantakizawa/huggingface-top-papers}},
262
- note={Derived from Wayback Machine snapshots of HuggingFace Daily Papers, 441 snapshots}
263
- }
264
- ```
265
-
266
- ## 🤝 Contributing
267
-
268
- Found an issue? Suggestions for improvement?
269
- - Open an issue on the [GitHub repository](https://github.com/ronantakizawa)
270
- - Submit feedback through Hugging Face discussions
271
-
272
- ## ⚠️ Disclaimer
273
-
274
- This dataset is derived from public Wayback Machine snapshots of HuggingFace Daily Papers. It represents:
275
-
276
- - **Community interest and visibility**, not absolute research quality
277
- - **Trending patterns**, which may favor practical tools over pure theory
278
- - **English-language papers** primarily (HuggingFace audience bias)
279
- - **2025 snapshot** of the ML/AI research landscape
280
-
281
- Trending algorithms and their criteria are not publicly documented. This dataset captures historical visibility on HuggingFace's curated daily papers feed.
282
-
283
- ## 📄 License
284
-
285
- MIT License - Free to use with attribution
286
-
287
- ---
288
-
289
- **Dataset Details:**
290
- - **Created**: December 1, 2025
291
- - **Coverage**: January 2025 → November 2025
292
- - **Last Updated**: December 1, 2025
293
- - **Version**: 1.0
294
- - **Maintainer**: Ronan Takizawa
295
- - **Contact**: [Hugging Face Profile](https://huggingface.co/ronantakizawa)
296
-
297
- ---
298
-
299
- *Part of a series of trending data datasets capturing temporal patterns across different platforms (GitHub, TikTok, Twitter, HuggingFace Papers, Yahoo Finance).*
 
58
  - Day 3: Rank 10 → 41 points
59
  - **Total Score: 137**
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  ## 🌟 Key Insights
62
 
63
  ### 1. Top 10 Most Trending Papers (2025)
 
133
  - PaddleOCR 3.0: 57,600 stars
134
  - OmniFlatten: 50,300 stars
135
  - MinerU2.5: 49,600 stars