data: add notebook for creating dataset splits
Browse files- CreateDatasetSplits.ipynb +232 -0
CreateDatasetSplits.ipynb
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "42ac3dd1-7154-40ec-ae54-38e4389c5ea8",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"import os\n",
|
| 11 |
+
"import random\n",
|
| 12 |
+
"import requests\n",
|
| 13 |
+
"import zipfile\n",
|
| 14 |
+
"\n",
|
| 15 |
+
"from io import BytesIO"
|
| 16 |
+
]
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"cell_type": "code",
|
| 20 |
+
"execution_count": 2,
|
| 21 |
+
"id": "1ba83fb8-8c38-427e-83c1-68da2b5b4bbd",
|
| 22 |
+
"metadata": {},
|
| 23 |
+
"outputs": [
|
| 24 |
+
{
|
| 25 |
+
"name": "stdout",
|
| 26 |
+
"output_type": "stream",
|
| 27 |
+
"text": [
|
| 28 |
+
"Downloading dataset from https://coltekin.github.io/offensive-turkish/offenseval2020-turkish.zip\n",
|
| 29 |
+
"Extracting files to './'...\n",
|
| 30 |
+
"Extracted files: ['offenseval2020-turkish/', 'offenseval2020-turkish/offenseval-tr-training-v1/', 'offenseval2020-turkish/offenseval-tr-training-v1/offenseval-annotation.txt', 'offenseval2020-turkish/offenseval-tr-training-v1/offenseval-tr-training-v1.tsv', 'offenseval2020-turkish/offenseval-tr-training-v1/readme-trainingset-tr.txt', 'offenseval2020-turkish/offenseval-tr-testset-v1/', 'offenseval2020-turkish/offenseval-tr-testset-v1/offenseval-tr-testset-v1.tsv', 'offenseval2020-turkish/offenseval-tr-testset-v1/offenseval-tr-labela-v1.tsv', 'offenseval2020-turkish/README.txt']\n"
|
| 31 |
+
]
|
| 32 |
+
}
|
| 33 |
+
],
|
| 34 |
+
"source": [
|
| 35 |
+
"def download_and_extract_zip(url, extract_to=\"./\"):\n",
|
| 36 |
+
" try:\n",
|
| 37 |
+
" print(f\"Downloading dataset from {url}\")\n",
|
| 38 |
+
" response = requests.get(url)\n",
|
| 39 |
+
" response.raise_for_status()\n",
|
| 40 |
+
"\n",
|
| 41 |
+
" with zipfile.ZipFile(BytesIO(response.content)) as z:\n",
|
| 42 |
+
" print(f\"Extracting files to '{extract_to}'...\")\n",
|
| 43 |
+
" z.extractall(extract_to)\n",
|
| 44 |
+
" extracted_files = z.namelist()\n",
|
| 45 |
+
" print(f\"Extracted files: {extracted_files}\")\n",
|
| 46 |
+
" except Exception as e:\n",
|
| 47 |
+
" print(f\"An error occurred: {e}\")\n",
|
| 48 |
+
"\n",
|
| 49 |
+
"url = \"https://coltekin.github.io/offensive-turkish/offenseval2020-turkish.zip\" # Replace with the actual URL\n",
|
| 50 |
+
"download_and_extract_zip(url, \"./\")"
|
| 51 |
+
]
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"cell_type": "code",
|
| 55 |
+
"execution_count": 3,
|
| 56 |
+
"id": "b74682a7-ccf8-44ad-98a0-73636c35e10e",
|
| 57 |
+
"metadata": {},
|
| 58 |
+
"outputs": [],
|
| 59 |
+
"source": [
|
| 60 |
+
"original_train_file = \"./offenseval2020-turkish/offenseval-tr-training-v1/offenseval-tr-training-v1.tsv\"\n",
|
| 61 |
+
"original_test_file = \"./offenseval2020-turkish/offenseval-tr-testset-v1/offenseval-tr-testset-v1.tsv\"\n",
|
| 62 |
+
"orginal_label_test_file = \"./offenseval2020-turkish/offenseval-tr-testset-v1/offenseval-tr-labela-v1.tsv\""
|
| 63 |
+
]
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"cell_type": "code",
|
| 67 |
+
"execution_count": 4,
|
| 68 |
+
"id": "af3ba702-1341-4e70-8c74-87078eeaddf1",
|
| 69 |
+
"metadata": {},
|
| 70 |
+
"outputs": [],
|
| 71 |
+
"source": [
|
| 72 |
+
"def get_instances(filename: str):\n",
|
| 73 |
+
" instances = []\n",
|
| 74 |
+
" with open(filename, \"rt\") as f_p:\n",
|
| 75 |
+
" for line in f_p:\n",
|
| 76 |
+
" line = line.strip()\n",
|
| 77 |
+
" \n",
|
| 78 |
+
" if not line:\n",
|
| 79 |
+
" continue\n",
|
| 80 |
+
" \n",
|
| 81 |
+
" if line.startswith(\"id\"):\n",
|
| 82 |
+
" continue\n",
|
| 83 |
+
" \n",
|
| 84 |
+
" _, tweet, label = line.split(\"\\t\")\n",
|
| 85 |
+
"\n",
|
| 86 |
+
" instances.append([label, tweet])\n",
|
| 87 |
+
"\n",
|
| 88 |
+
" print(f\"Found {len(instances)} training instances.\")\n",
|
| 89 |
+
"\n",
|
| 90 |
+
" return instances"
|
| 91 |
+
]
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"cell_type": "code",
|
| 95 |
+
"execution_count": 5,
|
| 96 |
+
"id": "a397f04d-354c-4d97-9f93-794929c5e51d",
|
| 97 |
+
"metadata": {},
|
| 98 |
+
"outputs": [],
|
| 99 |
+
"source": [
|
| 100 |
+
"def get_test_instances(filename: str, label_filename: str):\n",
|
| 101 |
+
" # E.g. 41993,NOT is mapped to \"41993\" -> \"NOT\"\n",
|
| 102 |
+
" id_label_mapping = {}\n",
|
| 103 |
+
" with open(label_filename, \"rt\") as f_p:\n",
|
| 104 |
+
" for line in f_p:\n",
|
| 105 |
+
" line = line.strip()\n",
|
| 106 |
+
"\n",
|
| 107 |
+
" if not line:\n",
|
| 108 |
+
" continue\n",
|
| 109 |
+
"\n",
|
| 110 |
+
" id_, label = line.split(\",\")\n",
|
| 111 |
+
"\n",
|
| 112 |
+
" id_label_mapping[id_] = label\n",
|
| 113 |
+
"\n",
|
| 114 |
+
" print(f\"Found {len(id_label_mapping)} labelled test instances\")\n",
|
| 115 |
+
"\n",
|
| 116 |
+
" instances = []\n",
|
| 117 |
+
" \n",
|
| 118 |
+
" with open(filename, \"rt\") as f_p:\n",
|
| 119 |
+
" for line in f_p:\n",
|
| 120 |
+
" line = line.strip()\n",
|
| 121 |
+
" \n",
|
| 122 |
+
" if not line:\n",
|
| 123 |
+
" continue\n",
|
| 124 |
+
" \n",
|
| 125 |
+
" if line.startswith(\"id\"):\n",
|
| 126 |
+
" continue\n",
|
| 127 |
+
" \n",
|
| 128 |
+
" id_, tweet = line.split(\"\\t\")\n",
|
| 129 |
+
"\n",
|
| 130 |
+
" label = id_label_mapping[id_]\n",
|
| 131 |
+
"\n",
|
| 132 |
+
" instances.append([label, tweet])\n",
|
| 133 |
+
" return instances\n",
|
| 134 |
+
"\n",
|
| 135 |
+
" assert len(id_label_mapping) == len(instances)"
|
| 136 |
+
]
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"cell_type": "code",
|
| 140 |
+
"execution_count": 6,
|
| 141 |
+
"id": "06508ca8-649b-44ea-a8c6-09c2c2b434f4",
|
| 142 |
+
"metadata": {},
|
| 143 |
+
"outputs": [
|
| 144 |
+
{
|
| 145 |
+
"name": "stdout",
|
| 146 |
+
"output_type": "stream",
|
| 147 |
+
"text": [
|
| 148 |
+
"Found 31756 training instances.\n",
|
| 149 |
+
"Found 3528 labelled test instances\n"
|
| 150 |
+
]
|
| 151 |
+
}
|
| 152 |
+
],
|
| 153 |
+
"source": [
|
| 154 |
+
"original_train_instances = get_instances(original_train_file)\n",
|
| 155 |
+
"original_test_instances = get_test_instances(original_test_file, orginal_label_test_file)"
|
| 156 |
+
]
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"cell_type": "code",
|
| 160 |
+
"execution_count": 7,
|
| 161 |
+
"id": "cd4a7942-42c9-4bdb-9079-c6039ff908c4",
|
| 162 |
+
"metadata": {},
|
| 163 |
+
"outputs": [],
|
| 164 |
+
"source": [
|
| 165 |
+
"# Shuffling is done in-place\n",
|
| 166 |
+
"random.seed(83607)\n",
|
| 167 |
+
"random.shuffle(original_train_instances)"
|
| 168 |
+
]
|
| 169 |
+
},
|
| 170 |
+
{
|
| 171 |
+
"cell_type": "code",
|
| 172 |
+
"execution_count": 8,
|
| 173 |
+
"id": "6ab61fde-e534-4ffe-9302-f80581e503eb",
|
| 174 |
+
"metadata": {},
|
| 175 |
+
"outputs": [],
|
| 176 |
+
"source": [
|
| 177 |
+
"train_instances = original_train_instances[:30_000]\n",
|
| 178 |
+
"dev_instances = original_train_instances[30_000:]"
|
| 179 |
+
]
|
| 180 |
+
},
|
| 181 |
+
{
|
| 182 |
+
"cell_type": "code",
|
| 183 |
+
"execution_count": 9,
|
| 184 |
+
"id": "84f9c044-7906-4c04-9154-70e2b8d55982",
|
| 185 |
+
"metadata": {},
|
| 186 |
+
"outputs": [],
|
| 187 |
+
"source": [
|
| 188 |
+
"def write_instances(instances: str, split_name: str):\n",
|
| 189 |
+
" with open(f\"{split_name}.txt\", \"wt\") as f_out:\n",
|
| 190 |
+
" for instance in instances:\n",
|
| 191 |
+
" label, tweet = instance\n",
|
| 192 |
+
"\n",
|
| 193 |
+
" # We stick to Flair format for classification tasks, which is basically FastText inspired ;)\n",
|
| 194 |
+
" new_label = \"__label__\" + label\n",
|
| 195 |
+
" f_out.write(f\"{new_label} {tweet}\\n\")"
|
| 196 |
+
]
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"cell_type": "code",
|
| 200 |
+
"execution_count": 10,
|
| 201 |
+
"id": "0bf06e96-2b25-46ed-8a7e-0672e7aa6af8",
|
| 202 |
+
"metadata": {},
|
| 203 |
+
"outputs": [],
|
| 204 |
+
"source": [
|
| 205 |
+
"write_instances(train_instances, \"train\")\n",
|
| 206 |
+
"write_instances(dev_instances, \"dev\")\n",
|
| 207 |
+
"write_instances(original_test_instances, \"test\")"
|
| 208 |
+
]
|
| 209 |
+
}
|
| 210 |
+
],
|
| 211 |
+
"metadata": {
|
| 212 |
+
"kernelspec": {
|
| 213 |
+
"display_name": "Python 3 (ipykernel)",
|
| 214 |
+
"language": "python",
|
| 215 |
+
"name": "python3"
|
| 216 |
+
},
|
| 217 |
+
"language_info": {
|
| 218 |
+
"codemirror_mode": {
|
| 219 |
+
"name": "ipython",
|
| 220 |
+
"version": 3
|
| 221 |
+
},
|
| 222 |
+
"file_extension": ".py",
|
| 223 |
+
"mimetype": "text/x-python",
|
| 224 |
+
"name": "python",
|
| 225 |
+
"nbconvert_exporter": "python",
|
| 226 |
+
"pygments_lexer": "ipython3",
|
| 227 |
+
"version": "3.12.3"
|
| 228 |
+
}
|
| 229 |
+
},
|
| 230 |
+
"nbformat": 4,
|
| 231 |
+
"nbformat_minor": 5
|
| 232 |
+
}
|