File size: 14,079 Bytes
9c98c42 3e6046d 239205c 9c98c42 3e6046d 9c98c42 3e6046d 9c98c42 3e6046d 239205c 3e6046d 239205c 3e6046d 239205c 9c98c42 239205c 9c98c42 239205c 9c98c42 239205c 9c98c42 3e6046d 9c98c42 3e6046d 9c98c42 3e6046d 9c98c42 3e6046d 9c98c42 3e6046d 9c98c42 3e6046d 9c98c42 3e6046d 9c98c42 3e6046d 9c98c42 1ca4311 9c98c42 1ca4311 9c98c42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
# /// script
# dependencies = ["transformers>=4.46.0", "torch", "peft", "bitsandbytes", "accelerate", "datasets", "tqdm", "protobuf", "sentencepiece", "mistral-common>=1.5.0", "huggingface_hub"]
# ///
"""
MBPP Evaluation: Base Devstral vs Fine-tuned Alizee-Coder
Runs on HF Jobs with GPU support
VERSION: 3.0 - Proper code extraction for both base and fine-tuned models
FIXED:
- Extract code from ```python blocks for base model (handles chat-like responses)
- Function renaming before test execution for both models
"""
import os
import re
import json
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
from datasets import load_dataset
from tqdm import tqdm
from huggingface_hub import HfApi
print("=" * 60)
print("EVALUATION: Devstral-Small vs Alizee-Coder-Devstral")
print("Benchmark: MBPP (Mostly Basic Python Problems)")
print("VERSION: Fixed function name extraction")
print("=" * 60)
# Configuration
BASE_MODEL = "mistralai/Devstral-Small-2505"
FINETUNED_ADAPTER = "stmasson/alizee-coder-devstral-1-small"
OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small"
TEMPERATURE = 0.1
MAX_NEW_TOKENS = 512
# Check GPU
print(f"\nGPU available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"GPU: {torch.cuda.get_device_name(0)}")
print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
# 4-bit quantization config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
def load_mbpp():
"""Load MBPP dataset"""
print("\nLoading MBPP dataset...")
# Load the sanitized version (cleaner test cases)
dataset = load_dataset("google-research-datasets/mbpp", "sanitized", split="test")
print(f"Loaded {len(dataset)} problems")
return dataset
def load_model(model_name, adapter_name=None):
"""Load model with optional LoRA adapter"""
print(f"\nLoading model: {model_name}")
if adapter_name:
print(f"With adapter: {adapter_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
)
if adapter_name:
print("Loading LoRA adapter...")
model = PeftModel.from_pretrained(model, adapter_name)
model = model.merge_and_unload()
print("Adapter merged")
model.eval()
return model, tokenizer
def extract_function_name(test_list):
"""Extract expected function name from test cases"""
if not test_list:
return None
# Try to find function call in first test case
# Pattern: assert function_name(...) or function_name(...)
test = test_list[0]
# Match: assert func_name( or just func_name(
patterns = [
r'assert\s+(\w+)\s*\(', # assert func_name(
r'^\s*(\w+)\s*\(', # func_name( at start
]
for pattern in patterns:
match = re.search(pattern, test)
if match:
func_name = match.group(1)
# Skip common non-function names
if func_name not in ['assert', 'print', 'len', 'str', 'int', 'float', 'list', 'dict', 'set', 'tuple']:
return func_name
return None
def extract_python_code(text):
"""Extract Python code from model output"""
# Try ```python blocks
pattern = r'```python\s*(.*?)\s*```'
matches = re.findall(pattern, text, re.DOTALL)
if matches:
return matches[-1].strip()
# Try ``` blocks
pattern = r'```\s*(.*?)\s*```'
matches = re.findall(pattern, text, re.DOTALL)
if matches:
return matches[-1].strip()
return text.strip()
def generate_completion_base(model, tokenizer, prompt, func_name=None):
"""Generate code completion for BASE model (handles both pure completion and chat-like responses)"""
# Use a simple code completion prompt
if func_name:
code_prompt = f"# Task: {prompt}\n# Write a Python function named {func_name}\n\n"
else:
code_prompt = f"# Task: {prompt}\n\n"
inputs = tokenizer(code_prompt, return_tensors="pt", truncation=True, max_length=2048).to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=TEMPERATURE,
do_sample=True if TEMPERATURE > 0 else False,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
completion = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
# Try to extract code from ```python blocks (if model generates chat-like response)
code = extract_python_code(completion)
# If no code block found, try to find a function definition directly
if not code.startswith("def "):
# Look for function definition in the raw completion
match = re.search(r'(def\s+\w+\s*\([^)]*\).*?)(?=\ndef |\nclass |\n```|\Z)', completion, re.DOTALL)
if match:
code = match.group(1).strip()
# Stop at function boundary
stop_tokens = ["\ndef ", "\nclass ", "\nif __name__", "\n\n\n"]
for stop in stop_tokens:
if stop in code:
code = code[:code.index(stop)]
return code
def generate_completion_finetuned(model, tokenizer, prompt, func_name=None):
"""Generate code completion for FINE-TUNED model (Instruct format)"""
# Include expected function name in prompt
if func_name:
instruct_prompt = f"<s>[INST] Solve this programming problem with detailed reasoning:\n\n{prompt}\n\nIMPORTANT: The function MUST be named `{func_name}`.\n[/INST]"
else:
instruct_prompt = f"<s>[INST] Solve this programming problem with detailed reasoning:\n\n{prompt}\n[/INST]"
inputs = tokenizer(instruct_prompt, return_tensors="pt", truncation=True, max_length=2048).to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS * 2, # More tokens for reasoning
temperature=TEMPERATURE,
do_sample=True if TEMPERATURE > 0 else False,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
full_response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
code = extract_python_code(full_response)
# If function name was specified but model used different name, try to rename
if func_name and code:
# Find the actual function name in generated code
match = re.search(r'def\s+(\w+)\s*\(', code)
if match and match.group(1) != func_name:
# Replace the function name
code = re.sub(r'def\s+' + re.escape(match.group(1)) + r'\s*\(', f'def {func_name}(', code)
return code
def evaluate_model(model, tokenizer, dataset, model_name, is_finetuned=False):
"""Evaluate model on MBPP"""
print(f"\nEvaluating {model_name}...")
samples = []
for i, problem in enumerate(tqdm(dataset, desc=f"Generating ({model_name})")):
task_id = problem.get("task_id", i)
prompt = problem["prompt"] # Natural language description
test_list = problem.get("test_list", [])
# Extract expected function name from test cases
func_name = extract_function_name(test_list)
try:
if is_finetuned:
completion = generate_completion_finetuned(model, tokenizer, prompt, func_name)
else:
completion = generate_completion_base(model, tokenizer, prompt, func_name)
samples.append({
"task_id": task_id,
"prompt": prompt[:200],
"completion": completion,
"test_list": test_list,
"expected_func": func_name,
"model": model_name
})
except Exception as e:
print(f"Error on task {task_id}: {e}")
samples.append({
"task_id": task_id,
"prompt": prompt[:200],
"completion": "# Error during generation",
"test_list": test_list,
"expected_func": func_name,
"model": model_name
})
return samples
def run_tests(code, test_list):
"""Run test cases on generated code with automatic function renaming"""
try:
# Extract expected function name from first test
expected_func = extract_function_name(test_list)
# If we found an expected name, rename the function in code
if expected_func and code:
# Find the actual function name in generated code
match = re.search(r'def\s+(\w+)\s*\(', code)
if match:
actual_func = match.group(1)
if actual_func != expected_func:
# Rename the function to match expected name
code = re.sub(r'\b' + re.escape(actual_func) + r'\b', expected_func, code)
# Create execution environment
exec_globals = {}
exec(code, exec_globals)
# Run each test
for test in test_list:
try:
exec(test, exec_globals)
except AssertionError:
return False
except Exception:
return False
return True
except Exception:
return False
def evaluate_samples(samples):
"""Evaluate samples by running test cases"""
results = {"passed": 0, "failed": 0, "error": 0}
detailed = []
for sample in samples:
task_id = sample["task_id"]
code = sample["completion"]
test_list = sample.get("test_list", [])
if not test_list:
results["error"] += 1
detailed.append({"task_id": task_id, "status": "no_tests"})
continue
# Try to run the tests
if run_tests(code, test_list):
results["passed"] += 1
detailed.append({"task_id": task_id, "status": "passed"})
else:
results["failed"] += 1
detailed.append({"task_id": task_id, "status": "failed"})
total = results["passed"] + results["failed"]
pass_rate = results["passed"] / total if total > 0 else 0
return {
"pass@1": pass_rate,
"passed": results["passed"],
"failed": results["failed"],
"error": results["error"],
"total": total,
"detailed": detailed[:10]
}
def main():
# Load dataset
dataset = load_mbpp()
results = {}
# Evaluate base model
print("\n" + "=" * 60)
print("EVALUATING BASE MODEL")
print("=" * 60)
base_model, base_tokenizer = load_model(BASE_MODEL)
base_samples = evaluate_model(base_model, base_tokenizer, dataset, "Devstral-Small-Base", is_finetuned=False)
results["base"] = evaluate_samples(base_samples)
print(f"\nBase Model Results: pass@1 = {results['base']['pass@1']*100:.2f}%")
# Free memory
del base_model
torch.cuda.empty_cache()
# Evaluate fine-tuned model
print("\n" + "=" * 60)
print("EVALUATING FINE-TUNED MODEL")
print("=" * 60)
ft_model, ft_tokenizer = load_model(BASE_MODEL, FINETUNED_ADAPTER)
ft_samples = evaluate_model(ft_model, ft_tokenizer, dataset, "Alizee-Coder-Devstral", is_finetuned=True)
results["finetuned"] = evaluate_samples(ft_samples)
print(f"\nFine-tuned Model Results: pass@1 = {results['finetuned']['pass@1']*100:.2f}%")
# Summary
print("\n" + "=" * 60)
print("COMPARISON SUMMARY - MBPP")
print("=" * 60)
print(f"\n{'Model':<40} {'pass@1':>10} {'Passed':>8} {'Failed':>8}")
print("-" * 70)
print(f"{'Devstral-Small-2505 (Base)':<40} {results['base']['pass@1']*100:>9.2f}% {results['base']['passed']:>8} {results['base']['failed']:>8}")
print(f"{'Alizee-Coder-Devstral (Fine-tuned)':<40} {results['finetuned']['pass@1']*100:>9.2f}% {results['finetuned']['passed']:>8} {results['finetuned']['failed']:>8}")
improvement = (results['finetuned']['pass@1'] - results['base']['pass@1']) * 100
sign = "+" if improvement >= 0 else ""
print(f"\n{'Improvement:':<40} {sign}{improvement:>9.2f}%")
# Save results
output = {
"benchmark": "MBPP",
"base_model": BASE_MODEL,
"finetuned_model": FINETUNED_ADAPTER,
"results": {
"base": {
"pass@1": float(results['base']['pass@1']),
"passed": results['base']['passed'],
"failed": results['base']['failed'],
"total": results['base']['total']
},
"finetuned": {
"pass@1": float(results['finetuned']['pass@1']),
"passed": results['finetuned']['passed'],
"failed": results['finetuned']['failed'],
"total": results['finetuned']['total']
},
"improvement": float(improvement)
},
"samples": {
"base": base_samples[:5],
"finetuned": ft_samples[:5]
}
}
# Save locally
with open("eval_results_mbpp.json", "w") as f:
json.dump(output, f, indent=2)
print("\nResults saved to eval_results_mbpp.json")
# Upload results
try:
api = HfApi()
api.upload_file(
path_or_fileobj="eval_results_mbpp.json",
path_in_repo="eval_results_mbpp.json",
repo_id=OUTPUT_REPO,
repo_type="model",
)
print(f"Results uploaded to {OUTPUT_REPO}")
except Exception as e:
print(f"Could not upload results: {e}")
print("\n" + "=" * 60)
print("EVALUATION COMPLETE")
print("=" * 60)
if __name__ == "__main__":
main()
|