Upload scripts/eval_prompt_test.py with huggingface_hub
Browse files- scripts/eval_prompt_test.py +255 -0
scripts/eval_prompt_test.py
ADDED
|
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# dependencies = ["transformers>=4.46.0", "torch", "peft", "bitsandbytes", "accelerate", "datasets", "tqdm", "protobuf", "sentencepiece", "mistral-common>=1.5.0", "huggingface_hub"]
|
| 3 |
+
# ///
|
| 4 |
+
|
| 5 |
+
"""
|
| 6 |
+
Prompt Comparison Test: Direct vs Reasoning
|
| 7 |
+
Tests if "code only" prompt improves fine-tuned model scores on HumanEval subset
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import os
|
| 11 |
+
import re
|
| 12 |
+
import json
|
| 13 |
+
import torch
|
| 14 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 15 |
+
from peft import PeftModel
|
| 16 |
+
from datasets import load_dataset
|
| 17 |
+
from tqdm import tqdm
|
| 18 |
+
from huggingface_hub import HfApi
|
| 19 |
+
|
| 20 |
+
print("=" * 60)
|
| 21 |
+
print("PROMPT COMPARISON TEST")
|
| 22 |
+
print("Direct Code vs Reasoning Prompt")
|
| 23 |
+
print("=" * 60)
|
| 24 |
+
|
| 25 |
+
# Configuration
|
| 26 |
+
BASE_MODEL = "mistralai/Devstral-Small-2505"
|
| 27 |
+
FINETUNED_ADAPTER = "stmasson/alizee-coder-devstral-1-small"
|
| 28 |
+
OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small"
|
| 29 |
+
TEMPERATURE = 0.1
|
| 30 |
+
MAX_NEW_TOKENS = 512
|
| 31 |
+
NUM_SAMPLES = 50 # Subset for quick test
|
| 32 |
+
|
| 33 |
+
# GPU
|
| 34 |
+
print(f"\nGPU available: {torch.cuda.is_available()}")
|
| 35 |
+
if torch.cuda.is_available():
|
| 36 |
+
print(f"GPU: {torch.cuda.get_device_name(0)}")
|
| 37 |
+
print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
|
| 38 |
+
|
| 39 |
+
# 4-bit config
|
| 40 |
+
bnb_config = BitsAndBytesConfig(
|
| 41 |
+
load_in_4bit=True,
|
| 42 |
+
bnb_4bit_quant_type="nf4",
|
| 43 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 44 |
+
bnb_4bit_use_double_quant=True,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
def load_dataset_subset():
|
| 48 |
+
print("\nLoading HumanEval...")
|
| 49 |
+
ds = load_dataset("openai/openai_humaneval", split="test")
|
| 50 |
+
ds = ds.select(range(min(NUM_SAMPLES, len(ds))))
|
| 51 |
+
print(f"Using {len(ds)} problems")
|
| 52 |
+
return ds
|
| 53 |
+
|
| 54 |
+
def load_model():
|
| 55 |
+
print(f"\nLoading {BASE_MODEL} + {FINETUNED_ADAPTER}...")
|
| 56 |
+
|
| 57 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
| 58 |
+
if tokenizer.pad_token is None:
|
| 59 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 60 |
+
|
| 61 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 62 |
+
BASE_MODEL,
|
| 63 |
+
quantization_config=bnb_config,
|
| 64 |
+
device_map="auto",
|
| 65 |
+
trust_remote_code=True,
|
| 66 |
+
torch_dtype=torch.bfloat16,
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
model = PeftModel.from_pretrained(model, FINETUNED_ADAPTER)
|
| 70 |
+
model = model.merge_and_unload()
|
| 71 |
+
model.eval()
|
| 72 |
+
print("Model loaded and merged")
|
| 73 |
+
return model, tokenizer
|
| 74 |
+
|
| 75 |
+
def extract_code(text):
|
| 76 |
+
"""Extract Python code from output"""
|
| 77 |
+
# Try ```python blocks
|
| 78 |
+
m = re.findall(r'```python\s*(.*?)\s*```', text, re.DOTALL)
|
| 79 |
+
if m:
|
| 80 |
+
return m[-1].strip()
|
| 81 |
+
# Try ``` blocks
|
| 82 |
+
m = re.findall(r'```\s*(.*?)\s*```', text, re.DOTALL)
|
| 83 |
+
if m:
|
| 84 |
+
return m[-1].strip()
|
| 85 |
+
return text.strip()
|
| 86 |
+
|
| 87 |
+
def extract_body(code):
|
| 88 |
+
"""Extract function body if full function returned"""
|
| 89 |
+
if code.strip().startswith("def "):
|
| 90 |
+
lines = code.split('\n')
|
| 91 |
+
body = []
|
| 92 |
+
in_func = False
|
| 93 |
+
for line in lines:
|
| 94 |
+
if line.strip().startswith("def "):
|
| 95 |
+
in_func = True
|
| 96 |
+
continue
|
| 97 |
+
if in_func:
|
| 98 |
+
body.append(line)
|
| 99 |
+
if body:
|
| 100 |
+
return '\n'.join(body)
|
| 101 |
+
return code
|
| 102 |
+
|
| 103 |
+
def generate_direct(model, tokenizer, prompt):
|
| 104 |
+
"""Direct code prompt - no reasoning"""
|
| 105 |
+
p = f"<s>[INST] Complete this Python function. Output ONLY the code, no explanations:\n\n{prompt}[/INST]"
|
| 106 |
+
|
| 107 |
+
inputs = tokenizer(p, return_tensors="pt", truncation=True, max_length=2048).to(model.device)
|
| 108 |
+
with torch.no_grad():
|
| 109 |
+
out = model.generate(
|
| 110 |
+
**inputs,
|
| 111 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
| 112 |
+
temperature=TEMPERATURE,
|
| 113 |
+
do_sample=TEMPERATURE > 0,
|
| 114 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
raw = tokenizer.decode(out[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
| 118 |
+
code = extract_code(raw)
|
| 119 |
+
code = extract_body(code)
|
| 120 |
+
|
| 121 |
+
# Stop at boundaries
|
| 122 |
+
for stop in ["\ndef ", "\nclass ", "\nif __name__"]:
|
| 123 |
+
if stop in code:
|
| 124 |
+
code = code[:code.index(stop)]
|
| 125 |
+
|
| 126 |
+
return code
|
| 127 |
+
|
| 128 |
+
def generate_reasoning(model, tokenizer, prompt):
|
| 129 |
+
"""Reasoning prompt - original approach"""
|
| 130 |
+
p = f"<s>[INST] Solve this programming problem with detailed reasoning:\n\n{prompt}[/INST]"
|
| 131 |
+
|
| 132 |
+
inputs = tokenizer(p, return_tensors="pt", truncation=True, max_length=2048).to(model.device)
|
| 133 |
+
with torch.no_grad():
|
| 134 |
+
out = model.generate(
|
| 135 |
+
**inputs,
|
| 136 |
+
max_new_tokens=MAX_NEW_TOKENS * 2,
|
| 137 |
+
temperature=TEMPERATURE,
|
| 138 |
+
do_sample=TEMPERATURE > 0,
|
| 139 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
raw = tokenizer.decode(out[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
| 143 |
+
code = extract_code(raw)
|
| 144 |
+
code = extract_body(code)
|
| 145 |
+
|
| 146 |
+
return code
|
| 147 |
+
|
| 148 |
+
def check_syntax(code):
|
| 149 |
+
try:
|
| 150 |
+
compile(code, '<string>', 'exec')
|
| 151 |
+
return True
|
| 152 |
+
except:
|
| 153 |
+
return False
|
| 154 |
+
|
| 155 |
+
def evaluate(samples, dataset):
|
| 156 |
+
passed = 0
|
| 157 |
+
total = len(samples)
|
| 158 |
+
ds_dict = {p["task_id"]: p for p in dataset}
|
| 159 |
+
|
| 160 |
+
for s in samples:
|
| 161 |
+
task_id = s["task_id"]
|
| 162 |
+
completion = s["completion"]
|
| 163 |
+
problem = ds_dict.get(task_id)
|
| 164 |
+
if not problem:
|
| 165 |
+
continue
|
| 166 |
+
|
| 167 |
+
full = problem["prompt"] + completion
|
| 168 |
+
if not check_syntax(full):
|
| 169 |
+
continue
|
| 170 |
+
|
| 171 |
+
try:
|
| 172 |
+
g = {}
|
| 173 |
+
exec(full, g)
|
| 174 |
+
entry = problem.get("entry_point", task_id.split("/")[-1])
|
| 175 |
+
if entry in g:
|
| 176 |
+
passed += 1
|
| 177 |
+
except:
|
| 178 |
+
pass
|
| 179 |
+
|
| 180 |
+
return {"pass@1": passed / total if total > 0 else 0, "passed": passed, "total": total}
|
| 181 |
+
|
| 182 |
+
def main():
|
| 183 |
+
dataset = load_dataset_subset()
|
| 184 |
+
model, tokenizer = load_model()
|
| 185 |
+
|
| 186 |
+
# Test 1: Direct prompt
|
| 187 |
+
print("\n" + "=" * 60)
|
| 188 |
+
print("TEST 1: DIRECT CODE PROMPT")
|
| 189 |
+
print("=" * 60)
|
| 190 |
+
direct = []
|
| 191 |
+
for p in tqdm(dataset, desc="Direct"):
|
| 192 |
+
try:
|
| 193 |
+
c = generate_direct(model, tokenizer, p["prompt"])
|
| 194 |
+
except:
|
| 195 |
+
c = "# error"
|
| 196 |
+
direct.append({"task_id": p["task_id"], "completion": c})
|
| 197 |
+
|
| 198 |
+
r_direct = evaluate(direct, dataset)
|
| 199 |
+
print(f"Direct: {r_direct['pass@1']*100:.1f}% ({r_direct['passed']}/{r_direct['total']})")
|
| 200 |
+
|
| 201 |
+
# Test 2: Reasoning prompt
|
| 202 |
+
print("\n" + "=" * 60)
|
| 203 |
+
print("TEST 2: REASONING PROMPT")
|
| 204 |
+
print("=" * 60)
|
| 205 |
+
reasoning = []
|
| 206 |
+
for p in tqdm(dataset, desc="Reasoning"):
|
| 207 |
+
try:
|
| 208 |
+
c = generate_reasoning(model, tokenizer, p["prompt"])
|
| 209 |
+
except:
|
| 210 |
+
c = "# error"
|
| 211 |
+
reasoning.append({"task_id": p["task_id"], "completion": c})
|
| 212 |
+
|
| 213 |
+
r_reason = evaluate(reasoning, dataset)
|
| 214 |
+
print(f"Reasoning: {r_reason['pass@1']*100:.1f}% ({r_reason['passed']}/{r_reason['total']})")
|
| 215 |
+
|
| 216 |
+
# Summary
|
| 217 |
+
print("\n" + "=" * 60)
|
| 218 |
+
print("RESULTS SUMMARY")
|
| 219 |
+
print("=" * 60)
|
| 220 |
+
print(f"\n{'Prompt':<20} {'pass@1':>10}")
|
| 221 |
+
print("-" * 35)
|
| 222 |
+
print(f"{'Direct Code':<20} {r_direct['pass@1']*100:>9.1f}%")
|
| 223 |
+
print(f"{'Reasoning':<20} {r_reason['pass@1']*100:>9.1f}%")
|
| 224 |
+
|
| 225 |
+
diff = (r_direct['pass@1'] - r_reason['pass@1']) * 100
|
| 226 |
+
print(f"\n{'Improvement:':<20} {'+' if diff >= 0 else ''}{diff:.1f}%")
|
| 227 |
+
|
| 228 |
+
# Save
|
| 229 |
+
results = {
|
| 230 |
+
"experiment": "Prompt Comparison",
|
| 231 |
+
"samples": NUM_SAMPLES,
|
| 232 |
+
"direct": r_direct,
|
| 233 |
+
"reasoning": r_reason,
|
| 234 |
+
"improvement": diff
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
with open("prompt_comparison.json", "w") as f:
|
| 238 |
+
json.dump(results, f, indent=2)
|
| 239 |
+
|
| 240 |
+
try:
|
| 241 |
+
api = HfApi()
|
| 242 |
+
api.upload_file(
|
| 243 |
+
path_or_fileobj="prompt_comparison.json",
|
| 244 |
+
path_in_repo="prompt_comparison.json",
|
| 245 |
+
repo_id=OUTPUT_REPO,
|
| 246 |
+
repo_type="model",
|
| 247 |
+
)
|
| 248 |
+
print(f"\nUploaded to {OUTPUT_REPO}")
|
| 249 |
+
except Exception as e:
|
| 250 |
+
print(f"Upload failed: {e}")
|
| 251 |
+
|
| 252 |
+
print("\nDONE")
|
| 253 |
+
|
| 254 |
+
if __name__ == "__main__":
|
| 255 |
+
main()
|